[1] Bongiorno, B., Di Piazza, L., Skvortsov, V.: 
On the $n$-dimensional Perron integral defined by ordinary derivates. Real Anal. Exchange 26 (2000/01), 371–380. 
MR 1825515[3] Bongiorno, B., Di Piazza, L., Skvortsov, V.: 
The Ward property for a ${\mathcal{P}}$-adic basis and the ${\mathcal{P}}$-adic integral. J. Math. Anal. Appl. 285 (2003), 578–592. 
DOI 10.1016/S0022-247X(03)00426-8 | 
MR 2005142[4] Filipczak, T.: 
Intersection conditions for some density and ${\mathcal{I}}$-density local systems. Real Anal. Exchange 15 (1989/90), 170–192. 
DOI 10.2307/44151997 | 
MR 1042535[5] Gordon, R. A.: 
The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exchange 16 (1990/91), 154–168. 
MR 1087481[6] Gordon, R. A.: Review of [7]. Math. Reviews 2005d:26011.
[7] Kim, J. B., Lee, D. H., Lee, W. Y., Park, C. G., Park, J. M.: 
The s-Perron, sap-Perron and ap-McShane integrals. Czechoslovak Math. J. 54 (2004), 545–557. 
DOI 10.1007/s10587-004-6407-7 | 
MR 2086715[8] Pfeffer, W. F.: 
The Riemann Approach to Integration. Cambridge University Press, Cambridge, 1993. 
MR 1268404 | 
Zbl 0804.26005[9] Skvortsov, V.: 
Continuity of $\delta $-variation and construction of continuous major and minor functions for the Perron integral. Real Anal. Exchange 21 (1995/96), 270–277. 
MR 1377536[10] Thomson, B. S.: 
Real Functions. Lecture Notes in Mathematics, vol. 1170, Springer, 1985. 
MR 0818744 | 
Zbl 0581.26001[11] Thomson, B. S.: 
Symmetric Properties of Real Functions. Monographs and Textbooks in Pure and Applied Mathematics, vol. 183, Marcel Dekker, New York, 1994. 
MR 1289417 | 
Zbl 0809.26001[12] Wang, C., Ding, C. S.: 
An integral involving Thomson’s local systems. Real Anal. Exchange 19 (1993/94), 248–253. 
MR 1268851