Previous |  Up |  Next

Article

Title: On McShane-type integrals with respect to some derivation bases (English)
Author: Skvortsov, Valentin A.
Author: Sworowski, Piotr
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 4
Year: 2006
Pages: 365-378
Summary lang: English
.
Category: math
.
Summary: Some observations concerning McShane type integrals are collected. In particular, a simple construction of continuous major/minor functions for a McShane integrand in $\mathbb{R}^n$ is given. (English)
Keyword: McShane integral
Keyword: Kurzweil-Henstock integral
Keyword: Perron integral
Keyword: basis
MSC: 26A39
idZBL: Zbl 1112.26010
idMR: MR2273928
DOI: 10.21136/MB.2006.133973
.
Date available: 2009-09-24T22:27:25Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133973
.
Reference: [1] Bongiorno, B., Di Piazza, L., Skvortsov, V.: On the $n$-dimensional Perron integral defined by ordinary derivates.Real Anal. Exchange 26 (2000/01), 371–380. MR 1825515
Reference: [2] Bongiorno, B., Di Piazza, L., Skvortsov, V.: On dyadic integrals and some other integrals associated with local systems.J. Math. Anal. Appl. 271 (2002), 506–524. MR 1923649, 10.1016/S0022-247X(02)00146-4
Reference: [3] Bongiorno, B., Di Piazza, L., Skvortsov, V.: The Ward property for a ${\mathcal{P}}$-adic basis and the ${\mathcal{P}}$-adic integral.J. Math. Anal. Appl. 285 (2003), 578–592. MR 2005142, 10.1016/S0022-247X(03)00426-8
Reference: [4] Filipczak, T.: Intersection conditions for some density and ${\mathcal{I}}$-density local systems.Real Anal. Exchange 15 (1989/90), 170–192. MR 1042535, 10.2307/44151997
Reference: [5] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral.Real Anal. Exchange 16 (1990/91), 154–168. MR 1087481
Reference: [6] Gordon, R. A.: Review of [7].Math. Reviews 2005d:26011.
Reference: [7] Kim, J. B., Lee, D. H., Lee, W. Y., Park, C. G., Park, J. M.: The s-Perron, sap-Perron and ap-McShane integrals.Czechoslovak Math. J. 54 (2004), 545–557. MR 2086715, 10.1007/s10587-004-6407-7
Reference: [8] Pfeffer, W. F.: The Riemann Approach to Integration.Cambridge University Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [9] Skvortsov, V.: Continuity of $\delta $-variation and construction of continuous major and minor functions for the Perron integral.Real Anal. Exchange 21 (1995/96), 270–277. MR 1377536
Reference: [10] Thomson, B. S.: Real Functions.Lecture Notes in Mathematics, vol. 1170, Springer, 1985. Zbl 0581.26001, MR 0818744
Reference: [11] Thomson, B. S.: Symmetric Properties of Real Functions.Monographs and Textbooks in Pure and Applied Mathematics, vol. 183, Marcel Dekker, New York, 1994. Zbl 0809.26001, MR 1289417
Reference: [12] Wang, C., Ding, C. S.: An integral involving Thomson’s local systems.Real Anal. Exchange 19 (1993/94), 248–253. MR 1268851
.

Files

Files Size Format View
MathBohem_131-2006-4_3.pdf 388.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo