Previous |  Up |  Next

Article

Title: Strong singularities in mixed boundary value problems (English)
Author: Rachůnková, Irena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 4
Year: 2006
Pages: 393-409
Summary lang: English
.
Category: math
.
Summary: We study singular boundary value problems with mixed boundary conditions of the form \[ (p(t)u^{\prime })^{\prime }+ p(t)f(t,u,p(t)u^{\prime })=0, \quad \lim _{t\rightarrow 0+}p(t)u^{\prime }(t)=0, \quad u(T)=0, \] where $[0,T]\subset {\mathbb{R}}.$ We assume that ${\mathbb{R}}^2,$ $f$ satisfies the Carathéodory conditions on $(0,T)\times $ $p\in C[0,T]$ and ${1/p}$ need not be integrable on $[0,T].$ Here $f$ can have time singularities at $t=0$ and/or $t=T$ and a space singularity at $x=0$. Moreover, $f$ can change its sign. Provided $f$ is nonnegative it can have even a space singularity at $y=0.$ We present conditions for the existence of solutions positive on $[0,T).$ (English)
Keyword: singular mixed boundary value problem
Keyword: positive solution
Keyword: lower function
Keyword: upper function
Keyword: convergence of approximate regular problems
MSC: 34B15
MSC: 34B16
MSC: 34B18
idZBL: Zbl 1114.34020
idMR: MR2273930
DOI: 10.21136/MB.2006.133975
.
Date available: 2009-09-24T22:27:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133975
.
Reference: [1] R. P. Agarwal, D. O’Regan: Singular boundary value problems for superlinear second order ordinary and delay differential equations.J. Differ. Equations 130 (1996), 333–355. MR 1410892, 10.1006/jdeq.1996.0147
Reference: [2] R. P. Agarwal, D. O’Regan: Nonlinear superlinear singular and nonsingular second order boundary value problems.J. Differ. Equations 143 (1998), 60–95. MR 1604959, 10.1006/jdeq.1997.3353
Reference: [3] R. P. Agarwal, D. O’Regan: Singular problems motivated from classical upper and lower solutions.Acta Math. Hungar. 100 (2003), 245–256. MR 1990185, 10.1023/A:1025045626822
Reference: [4] R. P. Agarwal, D. O’Regan, S. Staněk: Existence of positive solutions for boundary-value problems with singularities in phase variables.Proc. Edinb. Math. Soc. 47 (2004), 1–13. MR 2064733, 10.1017/S0013091503000105
Reference: [5] R. P. Agarwal, S. Staněk: Nonnegative solutions of singular boundary value problems with sign changing nonlinearities.Comp. Math. Appl. 46 (2003), 1827–1837. MR 2018768, 10.1016/S0898-1221(03)90239-2
Reference: [6] J. V. Baxley: Some singular nonlinear boundary value problems.SIAM J. Math. Anal. 22 (1991), 463–479. Zbl 0719.34038, MR 1084968, 10.1137/0522030
Reference: [7] J. V. Baxley, G. S. Gersdorff: Singular reaction-diffusion boundary value problem.J. Differ. Equations 115 (1995), 441–457. MR 1310940, 10.1006/jdeq.1995.1022
Reference: [8] J. V. Baxley, K. P. Sorrells: A class of singular nonlinear boundary value problems.Math. Comp. Modelling 32 (2000), 631–641. MR 1791171, 10.1016/S0895-7177(00)00160-6
Reference: [9] H. Berestycki, P. L. Lions, L. A. Peletier: An ODE approach to the existence of positive solutions for semilinear problems in ${\mathbb{R}}^N$.Indiana Univ. Math. J. 30 (1981), 141–157. MR 0600039, 10.1512/iumj.1981.30.30012
Reference: [10] R. W. Dickey: Rotationally symmetric solutions for shallow membrane caps.Quart. Appl. Math. 47 (1989), 571–581. Zbl 0683.73022, MR 1012280, 10.1090/qam/1012280
Reference: [11] J. A. Gatica, V. Oliker, P. Waltman: Singular nonlinear boundary value problems for second-order ordinary differential equations.J. Differ. Equations 79 (1989), 62–78. MR 0997609, 10.1016/0022-0396(89)90113-7
Reference: [12] B. Gidas, W. M. Ni, L. Nirenberg: Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}}^N$.Adv. Math. Suppl. Studies 7A (1981), 369–402. MR 0634248
Reference: [13] K. N. Johnson: Circularly symmetric deformation of shallow elastic membrane caps.Quart. Appl. Math. 55 (1997), 537–550. Zbl 0885.73027, MR 1466147, 10.1090/qam/1466147
Reference: [14] R. Kannan, D. O’Regan: Singular and nonsingular boundary value problems with sign changing nonlinearities.J. Inequal. Appl. 5 (2000), 621–637. MR 1812574
Reference: [15] P. Kelevedjiev: Nonnegative solutions to some second-order boundary value problems.Nonlin. Anal. 36 (1999), 481–494. MR 1675264, 10.1016/S0362-546X(98)00025-X
Reference: [16] I. T. Kiguradze: On some singular boundary value problems for ordinary differential equations.Tbilis. Univ. Press, Tbilisi, 1975. (Russian) MR 0499402
Reference: [17] I. T. Kiguradze, B. L. Shekhter: Singular boundary value problems for second order ordinary differential equations.Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201. (Russian) MR 0925830
Reference: [18] D. O’Regan: Theory of Singular Boundary Value Problems.World Scientific, Singapore, 1994. MR 1286741
Reference: [19] I. Rachůnková: Singular mixed boundary value problem.(to appear). MR 2225980
Reference: [20] I. Rachůnková: Superlinear mixed BVP with time and space singularities.Submitted.
Reference: [21] J. Y. Shin: A singular nonlinear differential equation arising in the Homann flow.J. Math. Anal. Appl. 212 (1997), 443–451. Zbl 0883.34021, MR 1464889, 10.1006/jmaa.1997.5516
Reference: [22] A. Tineo: On a class of singular boundary value problems which contains the boundary conditions $x^{\prime }(0)=x(1)=0$.J. Differ. Equations 113 (1994), 1–16. Zbl 0810.34019, MR 1296159, 10.1006/jdeq.1994.1112
.

Files

Files Size Format View
MathBohem_131-2006-4_5.pdf 381.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo