Previous |  Up |  Next


Monge matrix; ultrametric matrix
We present some new results on Monge matrices and their relationship with ultrametric matrices.
[1] K. Cechlárová, P. Szabó: On the Monge property of matrices. Discrete Mathematics 81 (1990), 123–128. DOI 10.1016/0012-365X(90)90143-6 | MR 1054969
[2] M. Fiedler: Special ultrametric matrices and graphs. (to appear). MR 1779719 | Zbl 0967.15013
[3] A. J. Hoffman: On simple linear programming problems. Convexity, Proc. Symposia in Pure Mathematics, AMS, Providence, RI, 1961, pp. 317–327. MR 0157778
[4] M. Marcus, H. Minc: A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston, 1964. MR 0162808
[5] S. Martínez, G. Michon, J. San Martín: Inverses of ultrametric matrices are of Stieltjes type. SIAM J. Matrix Analysis Appl. 15 (1994), 98–106. DOI 10.1137/S0895479891217011 | MR 1257619
[6] R. Nabben, R. S. Varga: A linear algebra proof that the inverse of a strictly ultrametric matrix is a strictly diagonally dominant Stieltjes matrix. SIAM J. Matrix Analysis Appl. 15 (1994), 107–113. DOI 10.1137/S0895479892228237 | MR 1257620
Partner of
EuDML logo