Previous |  Up |  Next

Article

Title: Semisimplicity and global dimension of a finite von Neumann algebra (English)
Author: Vaš, Lia
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 13-26
Summary lang: English
.
Category: math
.
Summary: We prove that a finite von Neumann algebra ${\mathcal{A}}$ is semisimple if the algebra of affiliated operators ${\mathcal{U}}$ of ${\mathcal{A}}$ is semisimple. When ${\mathcal{A}}$ is not semisimple, we give the upper and lower bounds for the global dimensions of ${\mathcal{A}}$ and ${\mathcal{U}}.$ This last result requires the use of the Continuum Hypothesis. (English)
Keyword: finite von Neumann algebra
Keyword: algebra of affiliated operators
Keyword: semisimple ring
Keyword: global dimension
MSC: 16E10
MSC: 16K99
MSC: 16W99
MSC: 46L10
MSC: 46L99
idZBL: Zbl 1171.46317
idMR: MR2311749
DOI: 10.21136/MB.2007.133990
.
Date available: 2009-09-24T22:28:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133990
.
Reference: [1] P. Ara, D. Goldstein: A solution of the matrix problem for Rickart $C^*$-algebras.Math. Nachr. 164 (1993), 259–270. MR 1251467, 10.1002/mana.19931640118
Reference: [2] S. K. Berberian: The maximal ring of quotients of a finite von Neumann algebra.Rocky Mt. J. Math. 12 (1982), 149–164. Zbl 0484.46054, MR 0649748, 10.1216/RMJ-1982-12-1-149
Reference: [3] S. K. Berberian: Baer $*$-rings.Die Grundlehren der mathematischen Wissenschaften, 195, Springer, 1972. MR 0429975
Reference: [4] J. Dixmier: Von Neumann Algebras.North Holland, Amsterdam, 1981. Zbl 0473.46040, MR 0641217
Reference: [5] T. W. Hungerford: Algebra.Reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer, Berlin, 1980. Zbl 0442.00002, MR 0600654
Reference: [6] C. U. Jensen: Les foncteurs dérivés de $\mathop {\varprojlim }\limits $ et leurs applications en théorie des modules.Lecture Notes in Mathematics, 254, Springer, Berlin, 1972. MR 0407091
Reference: [7] R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, volume 1: Elementary Theory.Pure and Applied Mathematics Series, 100, Academic Press, London, 1983. MR 0719020
Reference: [8] R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, volume 2: Advanced Theory.Pure and Applied Mathematics Series, 100, Academic Press, London, 1986. MR 0859186
Reference: [9] T. Y. Lam: Lectures on Modules and Rings.Graduate Texts in Mathematics, 189, Springer, New York, 1999. Zbl 0911.16001, MR 1653294
Reference: [10] W. Lück: $L^2$-invariants: Theory and Applications to Geometry and K-theory.Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, 44, Springer, Berlin, 2002. Zbl 1069.57017, MR 1926649
Reference: [11] J. Rosenberg: Algebraic $K$-theory and Its Applications.Graduate Texts in Mathematics, 147, Springer, New York, 1994. Zbl 0801.19001, MR 1282290
Reference: [12] L. Vaš: Torsion theories for finite von Neumann algebras.Commun. Alg. 33 (2005), 663–688. Zbl 1108.46044, MR 2128403, 10.1081/AGB-200049871
Reference: [13] L. Vaš: Dimension and torsion theories for a class of Baer *-Rings.J. Alg. 289 (2005), 614–639. MR 2142388, 10.1016/j.jalgebra.2005.02.018
.

Files

Files Size Format View
MathBohem_132-2007-1_2.pdf 355.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo