Title:
|
Semisimplicity and global dimension of a finite von Neumann algebra (English) |
Author:
|
Vaš, Lia |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
132 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
13-26 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that a finite von Neumann algebra ${\mathcal{A}}$ is semisimple if the algebra of affiliated operators ${\mathcal{U}}$ of ${\mathcal{A}}$ is semisimple. When ${\mathcal{A}}$ is not semisimple, we give the upper and lower bounds for the global dimensions of ${\mathcal{A}}$ and ${\mathcal{U}}.$ This last result requires the use of the Continuum Hypothesis. (English) |
Keyword:
|
finite von Neumann algebra |
Keyword:
|
algebra of affiliated operators |
Keyword:
|
semisimple ring |
Keyword:
|
global dimension |
MSC:
|
16E10 |
MSC:
|
16K99 |
MSC:
|
16W99 |
MSC:
|
46L10 |
MSC:
|
46L99 |
idZBL:
|
Zbl 1171.46317 |
idMR:
|
MR2311749 |
DOI:
|
10.21136/MB.2007.133990 |
. |
Date available:
|
2009-09-24T22:28:31Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133990 |
. |
Reference:
|
[1] P. Ara, D. Goldstein: A solution of the matrix problem for Rickart $C^*$-algebras.Math. Nachr. 164 (1993), 259–270. MR 1251467, 10.1002/mana.19931640118 |
Reference:
|
[2] S. K. Berberian: The maximal ring of quotients of a finite von Neumann algebra.Rocky Mt. J. Math. 12 (1982), 149–164. Zbl 0484.46054, MR 0649748, 10.1216/RMJ-1982-12-1-149 |
Reference:
|
[3] S. K. Berberian: Baer $*$-rings.Die Grundlehren der mathematischen Wissenschaften, 195, Springer, 1972. MR 0429975 |
Reference:
|
[4] J. Dixmier: Von Neumann Algebras.North Holland, Amsterdam, 1981. Zbl 0473.46040, MR 0641217 |
Reference:
|
[5] T. W. Hungerford: Algebra.Reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer, Berlin, 1980. Zbl 0442.00002, MR 0600654 |
Reference:
|
[6] C. U. Jensen: Les foncteurs dérivés de $\mathop {\varprojlim }\limits $ et leurs applications en théorie des modules.Lecture Notes in Mathematics, 254, Springer, Berlin, 1972. MR 0407091 |
Reference:
|
[7] R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, volume 1: Elementary Theory.Pure and Applied Mathematics Series, 100, Academic Press, London, 1983. MR 0719020 |
Reference:
|
[8] R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, volume 2: Advanced Theory.Pure and Applied Mathematics Series, 100, Academic Press, London, 1986. MR 0859186 |
Reference:
|
[9] T. Y. Lam: Lectures on Modules and Rings.Graduate Texts in Mathematics, 189, Springer, New York, 1999. Zbl 0911.16001, MR 1653294 |
Reference:
|
[10] W. Lück: $L^2$-invariants: Theory and Applications to Geometry and K-theory.Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, 44, Springer, Berlin, 2002. Zbl 1069.57017, MR 1926649 |
Reference:
|
[11] J. Rosenberg: Algebraic $K$-theory and Its Applications.Graduate Texts in Mathematics, 147, Springer, New York, 1994. Zbl 0801.19001, MR 1282290 |
Reference:
|
[12] L. Vaš: Torsion theories for finite von Neumann algebras.Commun. Alg. 33 (2005), 663–688. Zbl 1108.46044, MR 2128403, 10.1081/AGB-200049871 |
Reference:
|
[13] L. Vaš: Dimension and torsion theories for a class of Baer *-Rings.J. Alg. 289 (2005), 614–639. MR 2142388, 10.1016/j.jalgebra.2005.02.018 |
. |