Previous |  Up |  Next

Article

Title: Chover-type laws of the iterated logarithm for weighted sums of NA sequences (English)
Author: Cai, Guang-hui
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 27-33
Summary lang: English
.
Category: math
.
Summary: To derive a Baum-Katz type result, a Chover-type law of the iterated logarithm is established for weighted sums of negatively associated (NA) and identically distributed random variables with a distribution in the domain of a stable law in this paper. (English)
Keyword: negatively associated sequence
Keyword: laws of the iterated logarithm
Keyword: weighted sum
Keyword: stable law
Keyword: Rosental type maximal inequality
MSC: 60F15
MSC: 62G50
idZBL: Zbl 1174.60328
idMR: MR2311750
DOI: 10.21136/MB.2007.133994
.
Date available: 2009-09-24T22:28:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133994
.
Reference: [1] Chen, P. Y.: Limiting behavior of weighted sums with stable distributions.Statist. Probab. Lett. 60 (2002), 367–375. Zbl 1014.60010, MR 1947176, 10.1016/S0167-7152(02)00286-9
Reference: [2] Chen, P. Y., Huang, L. H.: The Chover law of the iterated logarithm for random geometric series of stable distribution.Acta Math. Sin. 46 (2000), 1063–1070. (Chinese)
Reference: [3] : Chover, J. A law of the iterated logarithm for stable summands.Proc. Amer. Math. Soc. 17 (1966), 441–443. MR 0189096, 10.1090/S0002-9939-1966-0189096-2
Reference: [4] Joag, D. K., Proschan, F.: Negative associated random variables with application.Ann. Statist. 11 (1983), 286–295. MR 0684886, 10.1214/aos/1176346079
Reference: [5] Ledoux, M., Talagrand, M.: Probability in Banach Spaces.Springer, Berlin, 1991. MR 1102015
Reference: [6] Lin, Z. Y., Lu, C. R.: Limit Theorems on Mixing Random Variables.Kluwer Academic Publishers and Science Press, Dordrecht-Beijing, 1997.
Reference: [7] Lin, Z. Y., Lu, C. R., Su, Z. G.: Foundation of Probability Limit Theory.Beijing, Higher Education Press, 1999.
Reference: [8] Peng, L., Qi, Y. C.: Chover-type laws of the iterated logarithm for weighted sums.Statist. Probab. Lett. 65 (2003), 401–410. MR 2039884, 10.1016/j.spl.2003.08.009
Reference: [9] Qi, Y. C., Cheng, P.: On the law of the iterated logarithm for the partial sum in the domain of attraction of stable distribution.Chin. Ann. Math., Ser. A 17 (1996), 195–206. (Chinese) MR 1397108
Reference: [10] Shao, Q. M.: A comparison theorem on moment inequalities between negatively associated and independent random variables.J. Theor. Probab. 13 (2000), 343–356. Zbl 0971.60015, MR 1777538, 10.1023/A:1007849609234
Reference: [11] Vasudeva, K., Divanji, G.: LIL for delayed sums under a non-indentically distributed setup.Theory Prob. Appl. 37 (1992), 534–562. MR 1214358
Reference: [12] Zhang, L. X., Wen, J. W.: Strong laws for sums of $B$-valued mixing random fields.Chinese Ann. Math. 22A (2001), 205–216. MR 1837525
Reference: [13] Zinchenko, N. M.: A modified law of iterated logarithm for stable random variable.Theory Prob. Math. Stat. 49 (1994), 69–76. MR 1445249
.

Files

Files Size Format View
MathBohem_132-2007-1_3.pdf 295.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo