Previous |  Up |  Next

Article

Keywords:
$\lambda $-lattice; $\lambda $-semilattice; ortholattice; $\lambda $-ortholattice; antitone involution; Boolean quasiring
Summary:
Using the concept of the $\lambda $-lattice introduced recently by V. Snášel we define $\lambda $-lattices with antitone involutions. For them we establish a correspondence to ring-like structures similarly as it was done for ortholattices and pseudorings, for Boolean algebras and Boolean rings or for lattices with an antitone involution and the so-called Boolean quasirings.
References:
[1] G. Birkhof: Lattice Theory. (Third edition.) Amer. Math. Soc. Colloq. Publ. 25, Providence, RI, 1979. MR 0598630
[2] L. Beran: Orthomodular Lattices. Reidel Publ., Dordrecht, 1985. MR 0784029 | Zbl 0583.06008
[3] I. Chajda: Pseudorings induced by ortholattices. Czechoslovak Math. J. 46 (1996), 405–411. MR 1408295
[4] I. Chajda, G. Eigenthaler: A note on orthopseudorings and Boolean quasirings. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94. MR 1749914
[5] I. Chajda, H. Länger, M. Mączyński: Ring-like structures corresponding to generalized orthomodular lattices. Math. Slovaca 54 (2004), 143–150. MR 2074211
[6] D. Dorminger, H. Länger, M. Mączyński: The logic induced by a system of homomorphisms and its algebraic characterizations. Demonstratio Math. 30 (1997), 215–232.
[7] D. Dorminger, H. Länger, M. Mączyński: On ring-like structures occuring in axiomatic quantum mechanics. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289.
[8] G. Grätzer: General Lattice Theory. Birkhäuser, Basel, 1978. MR 0504338
[9] J. Ježek, R. Quackenbush: Directoids: algebraic models of up-directed sets. Algebra Univers. 27 (1990), 49–69. MR 1025835
[10] G. Kalmbach: Orthomodular Lattices. Academic Press, London, 1983. MR 0716496 | Zbl 0528.06012
[11] J. Karásek: Rotations of $\lambda $-lattices. Math. Bohem. 121 (1996), 293–300. MR 1419883
[12] H. Länger: Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices. Tatra Mt. Math. Publ. 15 (1998), 97–105. MR 1655082
[13] V. Snášel: $\lambda $-Lattices. Math. Bohem. 122 (1997), 267–272. MR 1600648
Partner of
EuDML logo