Previous |  Up |  Next

Article

Title: Ring-like structures derived from $\lambda $-lattices with antitone involutions (English)
Author: Chajda, Ivan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 87-96
Summary lang: English
.
Category: math
.
Summary: Using the concept of the $\lambda $-lattice introduced recently by V. Snášel we define $\lambda $-lattices with antitone involutions. For them we establish a correspondence to ring-like structures similarly as it was done for ortholattices and pseudorings, for Boolean algebras and Boolean rings or for lattices with an antitone involution and the so-called Boolean quasirings. (English)
Keyword: $\lambda $-lattice
Keyword: $\lambda $-semilattice
Keyword: ortholattice
Keyword: $\lambda $-ortholattice
Keyword: antitone involution
Keyword: Boolean quasiring
MSC: 06A12
MSC: 06B99
MSC: 06C15
MSC: 16Y99
MSC: 81P10
idZBL: Zbl 1174.06309
idMR: MR2311756
DOI: 10.21136/MB.2007.133992
.
Date available: 2009-09-24T22:29:38Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133992
.
Reference: [1] G. Birkhof: Lattice Theory.(Third edition.) Amer. Math. Soc. Colloq. Publ. 25, Providence, RI, 1979. MR 0598630
Reference: [2] L. Beran: Orthomodular Lattices.Reidel Publ., Dordrecht, 1985. Zbl 0583.06008, MR 0784029
Reference: [3] I. Chajda: Pseudorings induced by ortholattices.Czechoslovak Math. J. 46 (1996), 405–411. MR 1408295
Reference: [4] I. Chajda, G. Eigenthaler: A note on orthopseudorings and Boolean quasirings.Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94. MR 1749914
Reference: [5] I. Chajda, H. Länger, M. Mączyński: Ring-like structures corresponding to generalized orthomodular lattices.Math. Slovaca 54 (2004), 143–150. MR 2074211
Reference: [6] D. Dorminger, H. Länger, M. Mączyński: The logic induced by a system of homomorphisms and its algebraic characterizations.Demonstratio Math. 30 (1997), 215–232.
Reference: [7] D. Dorminger, H. Länger, M. Mączyński: On ring-like structures occuring in axiomatic quantum mechanics.Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289.
Reference: [8] G. Grätzer: General Lattice Theory.Birkhäuser, Basel, 1978. MR 0504338
Reference: [9] J. Ježek, R. Quackenbush: Directoids: algebraic models of up-directed sets.Algebra Univers. 27 (1990), 49–69. MR 1025835, 10.1007/BF01190253
Reference: [10] G. Kalmbach: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
Reference: [11] J. Karásek: Rotations of $\lambda $-lattices.Math. Bohem. 121 (1996), 293–300. MR 1419883
Reference: [12] H. Länger: Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices.Tatra Mt. Math. Publ. 15 (1998), 97–105. MR 1655082
Reference: [13] V. Snášel: $\lambda $-Lattices.Math. Bohem. 122 (1997), 267–272. MR 1600648
.

Files

Files Size Format View
MathBohem_132-2007-1_9.pdf 280.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo