Title:
|
Ring-like structures derived from $\lambda $-lattices with antitone involutions (English) |
Author:
|
Chajda, Ivan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
132 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
87-96 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Using the concept of the $\lambda $-lattice introduced recently by V. Snášel we define $\lambda $-lattices with antitone involutions. For them we establish a correspondence to ring-like structures similarly as it was done for ortholattices and pseudorings, for Boolean algebras and Boolean rings or for lattices with an antitone involution and the so-called Boolean quasirings. (English) |
Keyword:
|
$\lambda $-lattice |
Keyword:
|
$\lambda $-semilattice |
Keyword:
|
ortholattice |
Keyword:
|
$\lambda $-ortholattice |
Keyword:
|
antitone involution |
Keyword:
|
Boolean quasiring |
MSC:
|
06A12 |
MSC:
|
06B99 |
MSC:
|
06C15 |
MSC:
|
16Y99 |
MSC:
|
81P10 |
idZBL:
|
Zbl 1174.06309 |
idMR:
|
MR2311756 |
DOI:
|
10.21136/MB.2007.133992 |
. |
Date available:
|
2009-09-24T22:29:38Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133992 |
. |
Reference:
|
[1] G. Birkhof: Lattice Theory.(Third edition.) Amer. Math. Soc. Colloq. Publ. 25, Providence, RI, 1979. MR 0598630 |
Reference:
|
[2] L. Beran: Orthomodular Lattices.Reidel Publ., Dordrecht, 1985. Zbl 0583.06008, MR 0784029 |
Reference:
|
[3] I. Chajda: Pseudorings induced by ortholattices.Czechoslovak Math. J. 46 (1996), 405–411. MR 1408295 |
Reference:
|
[4] I. Chajda, G. Eigenthaler: A note on orthopseudorings and Boolean quasirings.Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94. MR 1749914 |
Reference:
|
[5] I. Chajda, H. Länger, M. Mączyński: Ring-like structures corresponding to generalized orthomodular lattices.Math. Slovaca 54 (2004), 143–150. MR 2074211 |
Reference:
|
[6] D. Dorminger, H. Länger, M. Mączyński: The logic induced by a system of homomorphisms and its algebraic characterizations.Demonstratio Math. 30 (1997), 215–232. |
Reference:
|
[7] D. Dorminger, H. Länger, M. Mączyński: On ring-like structures occuring in axiomatic quantum mechanics.Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289. |
Reference:
|
[8] G. Grätzer: General Lattice Theory.Birkhäuser, Basel, 1978. MR 0504338 |
Reference:
|
[9] J. Ježek, R. Quackenbush: Directoids: algebraic models of up-directed sets.Algebra Univers. 27 (1990), 49–69. MR 1025835, 10.1007/BF01190253 |
Reference:
|
[10] G. Kalmbach: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496 |
Reference:
|
[11] J. Karásek: Rotations of $\lambda $-lattices.Math. Bohem. 121 (1996), 293–300. MR 1419883 |
Reference:
|
[12] H. Länger: Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices.Tatra Mt. Math. Publ. 15 (1998), 97–105. MR 1655082 |
Reference:
|
[13] V. Snášel: $\lambda $-Lattices.Math. Bohem. 122 (1997), 267–272. MR 1600648 |
. |