Previous |  Up |  Next

Article

Title: A remark on supra-additive and supra-multiplicative operators on $C(X)$ (English)
Author: Ercan, Z.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 55-58
Summary lang: English
.
Category: math
.
Summary: M. Radulescu proved the following result: Let $X$ be a compact Hausdorff topological space and ${\pi }\: C(X)\rightarrow C(X)$ a supra-additive and supra-multiplicative operator. Then ${\pi }$ is linear and multiplicative. We generalize this result to arbitrary topological spaces. (English)
Keyword: $C(X)$-space
Keyword: supra-additive
Keyword: supra-multiplicative operator
Keyword: realcompact space
Keyword: realcompact
MSC: 46E25
MSC: 46E35
MSC: 46J10
MSC: 47B38
MSC: 54C35
idZBL: Zbl 1174.46326
idMR: MR2311753
DOI: 10.21136/MB.2007.133995
.
Date available: 2009-09-24T22:29:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133995
.
Reference: [1] C. D. Aliprantis, O. Burkinshaw: Positive Operators.Academic Press, New York, 1985. MR 0809372
Reference: [2] Z. Ercan, S. Önal: A remark on the homomorphism on $C(X)$.Proc. Amer. Math. Soc. 133 (2005), 3609–3611. MR 2163596, 10.1090/S0002-9939-05-07930-X
Reference: [3] K. P. Hart, J. Nagata, J. E. Vaughan: Encyclopedia of General Topology.Elsevier, Amsterdam, 2004. MR 2049453
Reference: [4] M. Radulescu: On a supra-additive and supra-multiplicative operator of $C(X)$.Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 24 (1980), 303–305. Zbl 0463.47034, MR 0611909
.

Files

Files Size Format View
MathBohem_132-2007-1_6.pdf 269.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo