Previous |  Up |  Next

Article

Title: Properties of a hypothetical exotic complex structure on $\Bbb C{\rm P}\sp 3$ (English)
Author: Brown, J. R.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 59-74
Summary lang: English
.
Category: math
.
Summary: We consider almost-complex structures on $\mathbb{C}\text{P}^3$ whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level. (English)
Keyword: complex structure
Keyword: projective space
Keyword: Frölicher spectral sequence
Keyword: Hodge numbers
MSC: 32J17
MSC: 53C15
MSC: 53C56
MSC: 55T99
MSC: 58A14
MSC: 58J20
idZBL: Zbl 1174.53345
idMR: MR2311754
DOI: 10.21136/MB.2007.133989
.
Date available: 2009-09-24T22:29:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133989
.
Reference: [1] M. F. Atiyah, I. M. Singer: The index of elliptic operators: III.Ann. of Math. 87 (1968), 546–604. MR 0236952, 10.2307/1970717
Reference: [2] F. Hirzebruch: Topological Methods in Algebraic Geometry.Springer, Berlin, 1966. Zbl 0138.42001, MR 1335917
Reference: [3] F. Hirzebruch, K. Kodaira: On the complex projective spaces.J. Math. Pures Appl. 36 (1957), 201–216. MR 0092195
Reference: [4] A. Gray: A property of a hypothetical complex structure on the six sphere.Bol. Un. Mat. Ital. 11 Suppl. fasc. 2 (1997), 251–255. Zbl 0891.53018, MR 1456264
Reference: [5] P. Griffiths, J. Harris: Principles of Algebraic Geometry.Wiley, New York, 1978. MR 0507725
Reference: [6] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry: I, II.Wiley, New York, 1969.
Reference: [7] T. Peternell: A rigidity theorem for ${\mathbb{C}}\text{P}^3$.Manuscripta Math. 50 (1985), 397–428. MR 0784150
Reference: [8] Y. T. Siu: Nondeformability of the complex projective space.J. Reine Angew. Math. 399 (1989), 208–219. Zbl 0671.32018, MR 1004139
Reference: [9] Y. T. Siu: Global nondeformability of the complex projective space Proceedings of the 1989 Taniguchi International Symposium on “Prospect in Complex Geometry” in Katata, Japan, Lecture Notes Math.vol. 1468, Springer, Berlin, 1991, pp. 254–280. MR 1123546
Reference: [10] E. Thomas: Complex structures on real vector bundles.Amer. J. Math. 89 (1967), 887–908. Zbl 0174.54802, MR 0220310, 10.2307/2373409
Reference: [11] L. Ugarte: Hodge numbers of a hypothetical complex structure on the six sphere.Geom. Dedicata 81 (2000), 173–179. Zbl 0996.53046, MR 1772200, 10.1023/A:1005236308351
Reference: [12] S. T. Yau: Calabi’s conjecture and some new results in algebraic geometry.Proc. Nat. Acad. Sci. USA 74 (1977), 1798–1799. Zbl 0355.32028, MR 0451180, 10.1073/pnas.74.5.1798
.

Files

Files Size Format View
MathBohem_132-2007-1_7.pdf 341.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo