Previous |  Up |  Next

Article

Title: A note on the fundamental matrix of variational equations in $\mathbb{R}^3$ (English)
Author: Adamec, Ladislav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 4
Year: 2003
Pages: 411-418
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the question whether some kind of additional information makes it possible to determine the fundamental matrix of variational equations in $\mathbb{R}^3$. An application concerning computation of a derivative of a scalar Poincaré mapping is given. (English)
Keyword: invariant submanifold
Keyword: variational equation
Keyword: moving orthogonal system
MSC: 34C30
MSC: 34D10
MSC: 37C10
MSC: 37E99
idZBL: Zbl 1052.37014
idMR: MR2032478
DOI: 10.21136/MB.2003.133999
.
Date available: 2009-09-24T22:11:26Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133999
.
Reference: [1] L. Adamec: A note on a generalization of Diliberto’s theorem for certain differential equations of higher dimension.(to appear). Zbl 1099.37032, MR 2125152
Reference: [2] I. Agricola, T. Friedrich: Global Analysis.American Mathematical Society, Rode Island, 2002. MR 1998826
Reference: [3] C. Chicone: Bifurcation of nonlinear oscillations and frequency entrainment near resonance.SIAM J. Math. Anal. 23 (1992), 1577–1608. MR 1185642, 10.1137/0523087
Reference: [4] C. Chicone: Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators.J. Differ. Equations 112 (1994), 407–447. MR 1293477, 10.1006/jdeq.1994.1110
Reference: [5] C. Chicone: Ordinary Differential Equations with Applications.Springer, New York, 1999. Zbl 0937.34001, MR 1707333
Reference: [6] Ph. Hartman: Ordinary Differential Equations.John Wiley, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [7] M. Y. Li, J. S. Muldowney: Dynamics of differential equations on invariant manifolds.J. Differ. Equations 168 (2000), 295–320. MR 1808452, 10.1006/jdeq.2000.3888
.

Files

Files Size Format View
MathBohem_128-2003-4_7.pdf 298.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo