Previous |  Up |  Next

Article

Title: Radicals and complete distributivity in relatively normal lattices (English)
Author: Rachůnek, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 4
Year: 2003
Pages: 401-410
Summary lang: English
.
Category: math
.
Summary: Lattices in the class $\mathcal{IRN}$ of algebraic, distributive lattices whose compact elements form relatively normal lattices are investigated. We deal mainly with the lattices in $\mathcal{IRN}$ the greatest element of which is compact. The distributive radicals of algebraic lattices are introduced and for the lattices in $\mathcal{IRN}$ with the sublattice of compact elements satisfying the conditional join-infinite distributive law they are compared with two other kinds of radicals. Connections between complete distributivity of algebraic lattices and the distributive radicals are described. The general results can be applied e.g. to $MV$-algebras, $GMV$-algebras and unital $\ell $-groups. (English)
Keyword: relatively normal lattice
Keyword: algebraic lattice
Keyword: complete distributivity
Keyword: closed element
Keyword: radical
MSC: 06D15
MSC: 06D20
MSC: 06D35
MSC: 06F05
MSC: 06F15
idZBL: Zbl 1052.06009
idMR: MR2032477
DOI: 10.21136/MB.2003.134005
.
Date available: 2009-09-24T22:11:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134005
.
Reference: [1] Anderson, M., Feil, T.: Lattice-Ordered Groups.D. Reidel Publ., Dordrecht, 1988. MR 0937703
Reference: [2] Balbes, R., Dwinger, P.: Distributive Lattices.Univ. of Missouri Press, Columbia, Missouri, 1974. MR 0373985
Reference: [3] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés.Springer, Berlin, 1977. MR 0552653
Reference: [4] Chang, C. C.: Algebraic analysis of many valued logic.Trans. Amer. Math. Soc. 88 (1958), 467–490. MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [5] Cignoli, R. O. L., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [6] Di Nola, A., Georgescu, G., Sessa, S.: Closed ideals of $MV$-algebras.Advances in Contemporary Logic and Computer Science, Contemp. Math., vol. 235, AMS, Providence, 1999, pp. 99–112. MR 1721208
Reference: [7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, 2000. MR 1861369
Reference: [8] Filipoiu, A., Georgescu, G.: On values in relatively normal lattices.Discrete Math. 161 (1996), 87–100. MR 1420523, 10.1016/0012-365X(95)00221-H
Reference: [9] Georgescu, G., Iorgulescu, A.: Pseudo-$MV$ algebras: A non-commutative extension of $MV$-algebras.Proc. Fourth Inter. Symp. Econ. Inform., May 6–9, 1999, INFOREC Printing House, Bucharest, 1999, pp. 961–968.
Reference: [10] Georgescu, G., Iorgulescu, A.: Pseudo-$MV$ algebras.Multiple Valued Logic 6 (2001), 95–135. MR 1817439
Reference: [11] Glass, A. M. W.: Partially Ordered Groups.World Scientific, Singapore, 1999. Zbl 0933.06010, MR 1791008
Reference: [12] Hart, J. B., Tsinakis, C.: Decompositions for relatively normal lattices.Trans. Amer. Math. Soc. 341 (1994), 519–548. MR 1211409, 10.1090/S0002-9947-1994-1211409-2
Reference: [13] Martinez, J.: Archimedean lattices.Algebra Universalis 3 (1973), 247–260. Zbl 0317.06004, MR 0349503, 10.1007/BF02945124
Reference: [14] Monteiro, A.: L’arithmétique des filtres et les espaces topologiques.De Segundo Symp. Mathematicas-Villavicencio, Mendoza, Buenos Aires, 1954, pp. 129–162. Zbl 0058.38503, MR 0074805
Reference: [15] Monteiro, A.: L’arithmétique des filtres et les espaces topologiques I–II. Notas de Logica Mathematica, vol. 29–30, 1974..
Reference: [16] Paseka, J.: Linear finitely separated objects of subcategories of domains.Math. Slovaca 46 (1996), 457–490. Zbl 0890.06007, MR 1451036
Reference: [17] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509
Reference: [18] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras.Algebra Universalis 48 (2002), 151–169. Zbl 1058.06015, MR 1929902, 10.1007/PL00012447
Reference: [19] Rachůnek, J.: Radicals in non-commutative generalizations of $MV$-algebras.Math. Slovaca 52 (2002), 135–144. Zbl 1008.06011, MR 1935113
Reference: [20] Snodgrass, J. T., Tsinakis, C.: The finite basis theorem for relative normal lattices.Algebra Universalis 33 (1995), 40–67. MR 1303631, 10.1007/BF01190765
.

Files

Files Size Format View
MathBohem_128-2003-4_6.pdf 328.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo