Previous |  Up |  Next

Article

Title: On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$ (English)
Author: Miyakawa, Tetsuro
Author: Schonbek, Maria Elena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 443-455
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in $\mathbb{R}^n$. Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound \[ \Vert u(t) \Vert \ge (t+1)^{-\frac{n+4}{2}}. \] (English)
Keyword: decay rates
Keyword: Navier-Stokes equations
MSC: 35B40
MSC: 35B45
MSC: 35D99
MSC: 35Q10
MSC: 35Q30
MSC: 76D05
idZBL: Zbl 0981.35048
idMR: MR1844282
DOI: 10.21136/MB.2001.134008
.
Date available: 2009-09-24T21:52:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134008
.
Reference: [1] A. Carpio: Large-time behavior in incompressible Navier-Stokes equations.SIAM J. Math. Anal. 27 (1996), 449–475. Zbl 0845.76019, MR 1377483, 10.1137/S0036141093256782
Reference: [2] Y. Fujigaki, T. Miyakawa: Asymptotic profiles of nonstationary incompressible NavierStokes flows in ${\mathbb{R}}^n$.Preprint, Kobe University, 2000.
Reference: [3] R. Kajikiya, T. Miyakawa: On $L^2$ decay of weak solutions of the Navier-Stokes equations in ${\mathbb{R}}^n$.Math. Z. 192 (1986), 135–148. MR 0835398, 10.1007/BF01162027
Reference: [4] T. Miyakawa: Application of Hardy space techniques to the time-decay problem for incompressible Navier-Stokes flows in ${\mathbb{R}}^n$.Funkcial. Ekvac. 41 (1998), 383–434. MR 1676881
Reference: [5] M. E. Schonbek: $L^2$ decay for weak solutions of the Navier-Stokes equations.Arch. Rational Mech. Anal. 88 (1985), 209–222. MR 0775190, 10.1007/BF00752111
Reference: [6] M. E. Schonbek: Large time behaviour of solutions to the Navier-Stokes equations.Commun. Partial Diff. Eq. 11 (1986), 733–763. Zbl 0607.35071, MR 0837929, 10.1080/03605308608820443
Reference: [7] M. E. Schonbek: Lower bounds of rates of decay for solutions to the Navier-Stokes equations.J. Amer. Math. Soc. 4 (1991), 423–449. Zbl 0739.35070, MR 1103459, 10.1090/S0894-0347-1991-1103459-2
Reference: [8] M. E. Schonbek: Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations.Indiana Univ. Math. J. 41 (1992), 809–823. Zbl 0759.35036, MR 1189912, 10.1512/iumj.1992.41.41042
Reference: [9] M. E. Schonbek: On decay of solutions to the Navier-Stokes equations.Applied Nonlinear Analysis, A. Sequeira, H. Beirao da Veiga, J. H. Videman (eds.), Kluwer/Plenum, New York, 1999, pp. 505–512. Zbl 0954.35131, MR 1727469
Reference: [10] M. Wiegner: Decay results for weak solutions of the Navier-Stokes equations in ${\mathbb{R}}^n$.J. London Math. Soc. 35 (1987), 303–313. MR 0881519
.

Files

Files Size Format View
MathBohem_126-2001-2_17.pdf 371.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo