Previous |  Up |  Next

Article

Title: Some initial boundary problems in electrodynamics for canonical domains in quaternions (English)
Author: Meister, E.
Author: Meister, L.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 429-442
Summary lang: English
.
Category: math
.
Summary: The initial boundary-transmission problems for electromagnetic fields in homogeneous and anisotropic media for canonical semi-infinite domains, like halfspaces, wedges and the exterior of half- and quarter-plane obstacles are formulated with the use of complex quaternions. The time-harmonic case was studied by A. Passow in his Darmstadt thesis 1998 in which he treated also the case of an homogeneous and isotropic layer in free space and above an ideally conducting plane. For thin layers and free space on the top a series of generalized vectorial Leontovich boundary value conditions were deduced and systems of Wiener-Hopf pseudo-differential equations for the tangential components of the electric and magnetic field vectors and their jumps across the screens were formulated as equivalent unknowns in certain anisotropic boundary Sobolev spaces. Now these results may be formulated with alternating differential forms in Lorentz spaces or with complex quaternions. (English)
Keyword: electromagnetic fields by complex quaternions
Keyword: initial boundary transmission problems for semi-infinite domains
Keyword: reduction to Wiener-Hopf pseudo-differential systems
Keyword: anisotropic Leontovitch boundary conditions
Keyword: complex quaternions
Keyword: initial-boundary transmission problems
Keyword: Wiener-Hopf pseudodifferential systems
Keyword: semi-infinite domains
MSC: 30G35
MSC: 35J20
MSC: 35Q60
MSC: 78A45
idZBL: Zbl 0981.35086
idMR: MR1844281
DOI: 10.21136/MB.2001.134024
.
Date available: 2009-09-24T21:52:26Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134024
.
Reference: [1] W. Baylis: Electrodynamics. A Modern Geometric Approach.Progress in Physics Vol. 17, Birkhäuser, Boston, 1999. Zbl 0920.35149, MR 1711172
Reference: [2] F. Brackx, R. Delanghe, F. Sommen: Clifford Analysis.Pitman, Boston, 1982. MR 0697564
Reference: [3] D. Colton, R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory.Applied Mathematical Sciences Vol. 93, Springer Verlag, 1992. MR 1183732
Reference: [4] C. Erbe: On Sommerfeld’s half-plnae problem for the equations of linear themoelasticity.Math. Methods Appl. Sci. 18 (1995), 1215–1237. MR 1362939, 10.1002/mma.1670181503
Reference: [5] K. Gürlebeck, W. Sprössig: Quaternionic and Clifford Calculus for Physicists and Engineers.Math. Methods in Practice, John Wiley & Sons, Chichester, 1997.
Reference: [6] B. Jancewicz: Multivectors and Clifford Algebra in Electrodynamics.World Scientific Publ., Singapore, 1988. Zbl 0727.15015, MR 1022883
Reference: [7] D.  Jones: The Theory of Electromagnetism.International Series of Monographs on Pure and Applied Mathematics Vol. 47, Pergamon Press, New York, 1964. Zbl 0121.21604, MR 0161555
Reference: [8] M. Leontovich: Investigations on Radiowave Propagation, Part II.Printing House Academy of Science, 1948.
Reference: [9] G. Maliuzhinets: Inversion formula for the Sommerfeld integral.Sov. Phys. Dokl. 3 (1958), 52–56.
Reference: [10] J. Mark: Initial-Boundary Value Problems in Linear Viscoelasticity Using Wiener-Hopf Methods.PhD thesis, TU Darmstadt, 2000. Zbl 0976.74002
Reference: [11] A. McIntosh, M. Mitrea: Clifford algebras and Maxwell’s equations in Lipschitz domains.Math. Methods Appl. Sci. 22 (1999), 1599–1620. MR 1727215, 10.1002/(SICI)1099-1476(199912)22:18<1599::AID-MMA95>3.0.CO;2-M
Reference: [12] E. Meister, A. Passow, K. Rottbrand: New results on wave diffraction by canonical obstacles.Oper. Theory Adv. Appl. 110 (1999), 235–256. MR 1747897
Reference: [13] E. Meister, F.-O. Speck: Modern Wiener-Hopf methods in diffraction theory.Ordinary and Partial Differential Equations, Vol. 2, B. Sleeman, R. J. Jarvis (eds.), Proc. Conf. Dundee 1988, Pitman Research Notes in Math., Longman, Harlow, 1989. MR 1031728
Reference: [14] L. Meister: Quaternions and Their Application in Photogrammetry and Navigation.Habilitationsschrift. TU Bergakademie, Freiberg, 1998. Zbl 0928.15009
Reference: [15] A. Passow: Sommerfeld-Halbebenenproblem mit elektromagnetisch anisotropen Leontovich-Randbedingungen.PhD thesis, TU Darmstadt, 1998.
Reference: [16] K. Rottbrand: Diffraction of Plane Waves and Exact Time-Space Solutions for Some Linear Models in Classical Physics.Habilitationsschrift. TU Darmstadt, 2000.
Reference: [17] J. Ryan: Clifford Algebras in Analysis and Related Topics. Based on a conference, Fayetteville, AR, 1993.CRC Press, Boca Raton, FL, 1996. MR 1383097
Reference: [18] L. Silberstein: Elektromagnetische Grundgleichungen in bivektorieller Behandlung.Ann. Physik 22 (1907), 579–586.
.

Files

Files Size Format View
MathBohem_126-2001-2_16.pdf 365.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo