Previous |  Up |  Next


transonic flow; Euler equations; Navier-Stokes equations; numerical solution; TVD; ENO; finite volume schemes
This contribution deals with the modern finite volume schemes solving the Euler and Navier-Stokes equations for transonic flow problems. We will mention the TVD theory for first order schemes and some numerical examples obtained by 2D central and upwind schemes for 2D transonic flows in the GAMM channel or through the SE 1050 turbine of Škoda Plzeň. The TVD MacCormack method is extended to a 3D method for solving flows through turbine cascades. Numerical examples of unsteady transonic viscous (laminar) flows through the DCA 8% cascade are also presented for $\text{Re}=4600$. Next, a new finite volume implicit scheme is presented for the case of unstructured meshes (with both triangular and quadrilateral cells) and inviscid compressible flows through the GAMM channel as well as the SE 1050 turbine cascade.
[1] D. M. Causon: High resolution finite volume schemes and computational aerodynamics. Nonlinear Hyperbolic Equations—Theory, Computation Methods and Applications, of Notes on Numerical Fluid Mechanics 24, Josef Ballmann, Rolf Jeltsch (eds.), Braunschweig, Vieweg, 1989, pp. 63–74. MR 0991352 | Zbl 0661.76057
[2] F. Coquel, P. Le Floch: Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach. Math. Comput. 57 (1991), 169–210. DOI 10.1090/S0025-5718-1991-1079010-2 | MR 1079010
[3] V. Dolejší: Sur des méthodes combinant des volumes finis et des éléments finis pour le calcul d’ecoulements compressibles sur des maillages non structurés. PhD thesis, L’Université Méditerranée Marseille et Univerzita Karlova Praha, 1998.
[4] M. Feistauer, J. Felcman, M. Lukáčová-Medviďová: Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995), 179–199. DOI 10.1016/0377-0427(95)00051-8 | MR 1365559
[5] J. Fořt, M. Huněk, K. Kozel, J. Lain, M. Šejna, M. Vavřincová: Numerical simulation of steady and unsteady flows through plane cascades. Fourteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, S. M. Deshpande, S. S. Desai, R. Narasimha (eds.), Springer, 1994, pp. 461–465. MR 1372705
[6] J. Fürst: Modern difference schemes for solving the system of Euler equations. Diploma thesis, Faculty of Nuclear Science and Physical Engineering, ČVUT Praha, 1994. (Czech)
[7] J. Fürst: Numerical modeling of the transonic flows using TVD and ENO schemes. PhD thesis, ČVUT v Praze and l’Université de la Méditerranée, Marseille, 2000, (in preparation).
[8] J. Fürst, K. Kozel: Using TVD and ENO schemes for numerical solution of the multidimensional system of Euler and Navier-Stokes equations. Pitman Research Notes, number 388 in Mathematics Series, 1997, Conference on Navier-Stokes equations, Varenna, 1997. MR 1773604
[9] J. B. Goodman, R. J. LeVeque: On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comp. 45 (1988), 503–520. MR 0790641
[10] A. Harten: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983), 357–393. DOI 10.1016/0021-9991(83)90136-5 | MR 0701178 | Zbl 0565.65050
[11] R. J. Veque: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel, 1990.
[12] S. Osher, S Chakravarthy: Upwind schemes and boundary conditions with applications to Euler equations in general geometries. J. Comput. Phys. 50 (1983), 447–481. DOI 10.1016/0021-9991(83)90106-7 | MR 0710405
Partner of
EuDML logo