Previous |  Up |  Next


hysteresis; Prandtl-Ishlinskii operator; material with periodic structure; nonlinear diffusion equation; homogenization; initial-boundary value problem; spatially periodic data
The paper deals with a scalar diffusion equation $ c\,u_t = ({{F}}[u_x])_x + f, $ where ${F}$ is a Prandtl-Ishlinskii operator and $c, f$ are given functions. In the diffusion or heat conduction equation the linear constitutive relation is replaced by a scalar Prandtl-Ishlinskii hysteresis spatially dependent operator. We prove existence, uniqueness and regularity of solution to the corresponding initial-boundary value problem. The problem is then homogenized by considering a sequence of equations of the above type with spatially periodic data $c^\varepsilon $ and $\eta ^\varepsilon $ when the spatial period $\varepsilon $ tends to zero. The homogenized characteristics $c^*$ and $\eta ^*$ are identified and the convergence of the corresponding solutions to the solution of the homogenized equation is proved.
[1] I. Babuška: Homogenization approach in engineering. Computing Methods in Applied Sciences and Engineering, Lecture Notes in Econ. and Math. Systems 134, Springer, Berlin, 1976, pp. 137–153. MR 0478946
[2] A. Bensoussan, J. L. Lions, G. Papanicolaou: Asymptotic Analysis for Periodic Structure. North Holland, 1978. MR 0503330
[3] M. Brokate: Hysteresis operators. Phase Transitions and Hysteresis, Lecture Notes of C.I.M.E., Montecatini Terme, July 13–21, 1993, Springer, Berlin, 1994, pp. 1–38. MR 1321830 | Zbl 0836.35065
[4] M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci., Vol. 121, Springer, New York, 1996. MR 1411908
[5] J. Franců, P. Krejčí: Homogenization of scalar wave equation with hysteresis. Continuum Mech. Thermodyn. 11 (1999), 371–390. DOI 10.1007/s001610050118 | MR 1727713
[6] J. Franců: Homogenization of scalar hysteresis operators. Equadiff 9 CD ROM, Masaryk University, Brno, 1998, pp. 111–122.
[7] A. Yu. Ishlinskii: Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser. 9 (1944), 580–590. (Russian)
[8] M. A. Krasnosel’skii, A.V. Pokrovskii: Systems with Hysteresis. (Rusian edition: Nauka, Moskva, 1983). Springer, Berlin, 1989. MR 0987431
[9] P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Vol. 8, Gakuto Int. Series Math. Sci. & Appl., Gakkötosho, Tokyo, 1996. MR 2466538
[10] L. Prandtl: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8 (1928), 85–106. (German) DOI 10.1002/zamm.19280080202
[11] A. Visintin: Differential Models of Hysteresis. Springer, Berlin, 1994. MR 1329094 | Zbl 0820.35004
Partner of
EuDML logo