[1] U. Abresch:
Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374 (1987), 169–192.
MR 0876223 |
Zbl 0597.53003
[2] A. Bobenko:
All constant mean curvature tori in ${\mathbb{R}}^3$, $\text{S}^3$, $3$ in terms of theta-functions. Math. Ann. 290 (1991), 209–245.
DOI 10.1007/BF01459243 |
MR 1109632
[5] J. Dorfmeister, I. McIntosh, F. Pedit, H. Wu:
On the meromorphic potential for a harmonic surface in a $k$-symmetric space. Manuscripta Math. 92 (1997), 143–152.
DOI 10.1007/BF02678186 |
MR 1428645
[7] J. Dorfmeister, H. Wu:
Constant mean curvature surfaces and loop groups. J. Reine Angew. Math. 440 (1993), 43–76.
MR 1225957 |
Zbl 0779.53004
[8] M. do Carmo:
Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, NJ., 1976.
MR 0394451 |
Zbl 0326.53001
[11] K. Grosse-Braukmann, R. Kusner, J. Sullivan:
Constant mean curvature surfaces with cylindrical ends. Mathematical Visualization. Algorithms, Applications, and Numerics. International workshop Visualization and mathematics, Berlin, Germany, September 16–19, 1997, Springer, Berlin, 1998, pp. 107–116.
MR 1677699
[14] C. Jaggy:
On the classification of constant mean curvature tori in ${\mathbb{R}}^3$. Comment. Math. Helv. 69 (1994), 640–658.
DOI 10.1007/BF02564507 |
MR 1303230
[18] U. Pinkall, I. Sterling:
On the classification of constant mean curvature tori. Ann. of Math. 130 (1989), 407–451.
DOI 10.2307/1971425 |
MR 1014929
[19] B. Smyth:
A generalization of a theorem of Delaunay on constant mean curvature surfaces. Statistical Thermodynamics and Differential Geometry of Microstructured Materials, Springer, Berlin, 1993.
MR 1226924 |
Zbl 0799.53010
[20] I. Sterling, H. Wente:
Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. J. 42 (1993), 1239–1266.
DOI 10.1512/iumj.1993.42.42057 |
MR 1266092
[22] H. Wente:
Immersed tori of constant mean curvature in ${\mathbb{R}}^3$. Variational Methods for Free Surface Interfaces., P. Concus, R. Finn (eds.), Springer, New York, 1987, pp. 13–24.
MR 0872884
[23] H. Wente:
Twisted tori of constant mean curvature in ${\mathbb{R}}^3$. Seminar on New Results in Nonlinear Partial Differential Equations. Vieweg, Braunschweig, 1987, pp. 1–36.
MR 0896276