Previous |  Up |  Next

Article

Keywords:
constant mean curvature surfaces; nonlinear partial differential equation; dressing action; Weierstrass type representation
Summary:
We give an expository account of a Weierstrass type representation of the non-zero constant mean curvature surfaces in space and discuss the meaning of the representation from the point of view of partial differential equations.
References:
[1] U. Abresch: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374 (1987), 169–192. MR 0876223 | Zbl 0597.53003
[2] A. Bobenko: All constant mean curvature tori in ${\mathbb{R}}^3$, $\text{S}^3$, $3$ in terms of theta-functions. Math. Ann. 290 (1991), 209–245. MR 1109632
[3] J. Dorfmeister, G. Haak: Meromorphic potentials and smooth CMC-surfaces. Math. Z. 224 (1997), 603–640. MR 1452051
[4] J. Dorfmeister, G. Haak: On constant mean curvature surfaces with periodic metric. Pacific J. Math. 182 (1998), 229–287. MR 1609603
[5] J. Dorfmeister, I. McIntosh, F. Pedit, H. Wu: On the meromorphic potential for a harmonic surface in a $k$-symmetric space. Manuscripta Math. 92 (1997), 143–152. MR 1428645
[6] J. Dorfmeister, F. Pedit, H. Wu: Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6 (1998), 633–668. MR 1664887
[7] J. Dorfmeister, H. Wu: Constant mean curvature surfaces and loop groups. J. Reine Angew. Math. 440 (1993), 43–76. MR 1225957 | Zbl 0779.53004
[8] M. do Carmo: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, NJ., 1976. MR 0394451 | Zbl 0326.53001
[9] J. Eells: The surfaces of Delaunay. Math. Intelligencer 9 (1987), 53–57. MR 0869541 | Zbl 0605.53002
[10] K. Grosse-Braukmann: New surfaces of constant mean curvature. Math. Z. 214 (1993), 527–565. MR 1248112
[11] K. Grosse-Braukmann, R. Kusner, J. Sullivan: Constant mean curvature surfaces with cylindrical ends. Mathematical Visualization. Algorithms, Applications, and Numerics. International workshop Visualization and mathematics, Berlin, Germany, September 16–19, 1997, Springer, Berlin, 1998, pp. 107–116. MR 1677699
[12] K. Grosse-Braukmann, K. Polthier: Compact constant mean curvature surfaces with lowgenus. Experimental Math. 6 (1997), 13–32. MR 1464579
[13] H. Hopf: Differential Geometry in the Large. Springer, Berlin, 1983. MR 0707850 | Zbl 0526.53002
[14] C. Jaggy: On the classification of constant mean curvature tori in ${\mathbb{R}}^3$. Comment. Math. Helv. 69 (1994), 640–658. MR 1303230
[15] N. Kapouleas: Complete constant mean curvature surfaces in Euclidean three-space. Ann. of Math. 131 (1990), 239–330. MR 1043269 | Zbl 0699.53007
[16] N. Kapouleas: Compact constant mean curvature surfaces in Euclidean three-space. J. Differential Geom. 33 (1991), 683–715. MR 1100207 | Zbl 0727.53063
[17] N. Kapouleas: Constant mean curvature surfaces constructed by fusing Wente tori. Invent. Math. 119 (1995), 443–518. MR 1317648 | Zbl 0840.53005
[18] U. Pinkall, I. Sterling: On the classification of constant mean curvature tori. Ann. of Math. 130 (1989), 407–451. MR 1014929
[19] B. Smyth: A generalization of a theorem of Delaunay on constant mean curvature surfaces. Statistical Thermodynamics and Differential Geometry of Microstructured Materials, Springer, Berlin, 1993. MR 1226924 | Zbl 0799.53010
[20] I. Sterling, H. Wente: Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. J. 42 (1993), 1239–1266. MR 1266092
[21] H. Wente: Counterexample to a conjecture of H. Hopf. Pacific J. Math. 121 (1986), 193–243. MR 0815044 | Zbl 0586.53003
[22] H. Wente: Immersed tori of constant mean curvature in ${\mathbb{R}}^3$. Variational Methods for Free Surface Interfaces., P. Concus, R. Finn (eds.), Springer, New York, 1987, pp. 13–24. MR 0872884
[23] H. Wente: Twisted tori of constant mean curvature in ${\mathbb{R}}^3$. Seminar on New Results in Nonlinear Partial Differential Equations. Vieweg, Braunschweig, 1987, pp. 1–36. MR 0896276
[24] H. Wu: On the dressing action of loop groups on constant mean curvature surfaces. Tohoku Math. J. 49 (1997), 599–621. MR 1478919 | Zbl 0912.53010
[25] H. Wu: A simple way for determining the normalized potentials for harmonic maps. Ann. Global Anal. Geom. 17 (1999), 189–199. MR 1675409 | Zbl 0954.58017
[26] H. Wu: A new characterization of normalized potentials in dimension two. Results Math. 36 (1999), 184–194. MR 1706520 | Zbl 0946.58017
Partner of
EuDML logo