[1] U. Abresch: 
Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374 (1987), 169–192. 
MR 0876223 | 
Zbl 0597.53003[2] A. Bobenko: 
All constant mean curvature tori in ${\mathbb{R}}^3$, $\text{S}^3$, $3$ in terms of theta-functions. Math. Ann. 290 (1991), 209–245. 
DOI 10.1007/BF01459243 | 
MR 1109632[5] J. Dorfmeister, I. McIntosh, F. Pedit, H. Wu: 
On the meromorphic potential for a harmonic surface in a $k$-symmetric space. Manuscripta Math. 92 (1997), 143–152. 
DOI 10.1007/BF02678186 | 
MR 1428645[7] J. Dorfmeister, H. Wu: 
Constant mean curvature surfaces and loop groups. J. Reine Angew. Math. 440 (1993), 43–76. 
MR 1225957 | 
Zbl 0779.53004[8] M. do Carmo: 
Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, NJ., 1976. 
MR 0394451 | 
Zbl 0326.53001[11] K. Grosse-Braukmann, R. Kusner, J. Sullivan: 
Constant mean curvature surfaces with cylindrical ends. Mathematical Visualization. Algorithms, Applications, and Numerics. International workshop Visualization and mathematics, Berlin, Germany, September 16–19, 1997, Springer, Berlin, 1998, pp. 107–116. 
MR 1677699[14] C. Jaggy: 
On the classification of constant mean curvature tori in ${\mathbb{R}}^3$. Comment. Math. Helv. 69 (1994), 640–658. 
DOI 10.1007/BF02564507 | 
MR 1303230[18] U. Pinkall, I. Sterling: 
On the classification of constant mean curvature tori. Ann. of Math. 130 (1989), 407–451. 
DOI 10.2307/1971425 | 
MR 1014929[19] B. Smyth: 
A generalization of a theorem of Delaunay on constant mean curvature surfaces. Statistical Thermodynamics and Differential Geometry of Microstructured Materials, Springer, Berlin, 1993. 
MR 1226924 | 
Zbl 0799.53010[20] I. Sterling, H. Wente: 
Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. J. 42 (1993), 1239–1266. 
DOI 10.1512/iumj.1993.42.42057 | 
MR 1266092[22] H. Wente: 
Immersed tori of constant mean curvature in ${\mathbb{R}}^3$. Variational Methods for Free Surface Interfaces., P. Concus, R. Finn (eds.), Springer, New York, 1987, pp. 13–24. 
MR 0872884[23] H. Wente: 
Twisted tori of constant mean curvature in ${\mathbb{R}}^3$. Seminar on New Results in Nonlinear Partial Differential Equations. Vieweg, Braunschweig, 1987, pp. 1–36. 
MR 0896276