Previous |  Up |  Next

Article

Title: The PDE describing constant mean curvature surfaces (English)
Author: Wu, Hongyou
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 531-540
Summary lang: English
.
Category: math
.
Summary: We give an expository account of a Weierstrass type representation of the non-zero constant mean curvature surfaces in space and discuss the meaning of the representation from the point of view of partial differential equations. (English)
Keyword: constant mean curvature surfaces
Keyword: nonlinear partial differential equation
Keyword: dressing action
Keyword: Weierstrass type representation
MSC: 35J60
MSC: 35Q53
MSC: 53A10
idZBL: Zbl 1031.53015
idMR: MR1844289
DOI: 10.21136/MB.2001.134012
.
Date available: 2009-09-24T21:53:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134012
.
Reference: [1] U. Abresch: Constant mean curvature tori in terms of elliptic functions.J. Reine Angew. Math. 374 (1987), 169–192. Zbl 0597.53003, MR 0876223
Reference: [2] A. Bobenko: All constant mean curvature tori in ${\mathbb{R}}^3$, $\text{S}^3$, $3$ in terms of theta-functions.Math. Ann. 290 (1991), 209–245. MR 1109632, 10.1007/BF01459243
Reference: [3] J. Dorfmeister, G. Haak: Meromorphic potentials and smooth CMC-surfaces.Math. Z. 224 (1997), 603–640. MR 1452051, 10.1007/PL00004295
Reference: [4] J. Dorfmeister, G. Haak: On constant mean curvature surfaces with periodic metric.Pacific J. Math. 182 (1998), 229–287. MR 1609603, 10.2140/pjm.1998.182.229
Reference: [5] J. Dorfmeister, I. McIntosh, F. Pedit, H. Wu: On the meromorphic potential for a harmonic surface in a $k$-symmetric space.Manuscripta Math. 92 (1997), 143–152. MR 1428645, 10.1007/BF02678186
Reference: [6] J. Dorfmeister, F. Pedit, H. Wu: Weierstrass type representation of harmonic maps into symmetric spaces.Comm. Anal. Geom. 6 (1998), 633–668. MR 1664887, 10.4310/CAG.1998.v6.n4.a1
Reference: [7] J. Dorfmeister, H. Wu: Constant mean curvature surfaces and loop groups.J. Reine Angew. Math. 440 (1993), 43–76. Zbl 0779.53004, MR 1225957
Reference: [8] M. do Carmo: Differential Geometry of Curves and Surfaces.Prentice-Hall, Englewood Cliffs, NJ., 1976. Zbl 0326.53001, MR 0394451
Reference: [9] J. Eells: The surfaces of Delaunay.Math. Intelligencer 9 (1987), 53–57. Zbl 0605.53002, MR 0869541, 10.1007/BF03023575
Reference: [10] K. Grosse-Braukmann: New surfaces of constant mean curvature.Math. Z. 214 (1993), 527–565. MR 1248112, 10.1007/BF02572424
Reference: [11] K. Grosse-Braukmann, R. Kusner, J. Sullivan: Constant mean curvature surfaces with cylindrical ends.Mathematical Visualization. Algorithms, Applications, and Numerics. International workshop Visualization and mathematics, Berlin, Germany, September 16–19, 1997, Springer, Berlin, 1998, pp. 107–116. MR 1677699
Reference: [12] K. Grosse-Braukmann, K. Polthier: Compact constant mean curvature surfaces with lowgenus.Experimental Math. 6 (1997), 13–32. MR 1464579, 10.1080/10586458.1997.10504348
Reference: [13] H. Hopf: Differential Geometry in the Large.Springer, Berlin, 1983. Zbl 0526.53002, MR 0707850
Reference: [14] C. Jaggy: On the classification of constant mean curvature tori in ${\mathbb{R}}^3$.Comment. Math. Helv. 69 (1994), 640–658. MR 1303230, 10.1007/BF02564507
Reference: [15] N. Kapouleas: Complete constant mean curvature surfaces in Euclidean three-space.Ann. of Math. 131 (1990), 239–330. Zbl 0699.53007, MR 1043269, 10.2307/1971494
Reference: [16] N. Kapouleas: Compact constant mean curvature surfaces in Euclidean three-space.J. Differential Geom. 33 (1991), 683–715. Zbl 0727.53063, MR 1100207, 10.4310/jdg/1214446560
Reference: [17] N. Kapouleas: Constant mean curvature surfaces constructed by fusing Wente tori.Invent. Math. 119 (1995), 443–518. Zbl 0840.53005, MR 1317648, 10.1007/BF01245190
Reference: [18] U. Pinkall, I. Sterling: On the classification of constant mean curvature tori.Ann. of Math. 130 (1989), 407–451. MR 1014929, 10.2307/1971425
Reference: [19] B. Smyth: A generalization of a theorem of Delaunay on constant mean curvature surfaces.Statistical Thermodynamics and Differential Geometry of Microstructured Materials, Springer, Berlin, 1993. Zbl 0799.53010, MR 1226924
Reference: [20] I. Sterling, H. Wente: Existence and classification of constant mean curvature multibubbletons of finite and infinite type.Indiana Univ. Math. J. 42 (1993), 1239–1266. MR 1266092, 10.1512/iumj.1993.42.42057
Reference: [21] H. Wente: Counterexample to a conjecture of H. Hopf.Pacific J. Math. 121 (1986), 193–243. Zbl 0586.53003, MR 0815044, 10.2140/pjm.1986.121.193
Reference: [22] H. Wente: Immersed tori of constant mean curvature in ${\mathbb{R}}^3$.Variational Methods for Free Surface Interfaces., P. Concus, R. Finn (eds.), Springer, New York, 1987, pp. 13–24. MR 0872884
Reference: [23] H. Wente: Twisted tori of constant mean curvature in ${\mathbb{R}}^3$.Seminar on New Results in Nonlinear Partial Differential Equations. Vieweg, Braunschweig, 1987, pp. 1–36. MR 0896276
Reference: [24] H. Wu: On the dressing action of loop groups on constant mean curvature surfaces.Tohoku Math. J. 49 (1997), 599–621. Zbl 0912.53010, MR 1478919, 10.2748/tmj/1178225065
Reference: [25] H. Wu: A simple way for determining the normalized potentials for harmonic maps.Ann. Global Anal. Geom. 17 (1999), 189–199. Zbl 0954.58017, MR 1675409, 10.1023/A:1006556302766
Reference: [26] H. Wu: A new characterization of normalized potentials in dimension two.Results Math. 36 (1999), 184–194. Zbl 0946.58017, MR 1706520, 10.1007/BF03322110
.

Files

Files Size Format View
MathBohem_126-2001-2_24.pdf 326.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo