Previous |  Up |  Next

Article

Title: On the minimum of the work of interaction forces between a pseudoplate and a rigid obstacle (English)
Author: Bock, Igor
Author: Lovíšek, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 281-292
Summary lang: English
.
Category: math
.
Summary: An optimization problem for the unilateral contact between a pseudoplate and a rigid obstacle is considered. The variable thickness of the pseudoplate plays the role of a control variable. The cost functional is a regular functional only in the smooth case. The existence of an optimal thickness is verified. The penalized optimal control problem is considered in the general case. (English)
Keyword: elliptic variational inequality
Keyword: pseudoplate
Keyword: thickness
Keyword: optimal control
Keyword: penalization
MSC: 35J85
MSC: 49J20
MSC: 49J40
MSC: 74K20
idZBL: Zbl 0980.49008
idMR: MR1844269
DOI: 10.21136/MB.2001.134022
.
Date available: 2009-09-24T21:50:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134022
.
Reference: [1] Bock, I., Lovíšek, J.: Optimal control problems for variational inequalities with controls in coefficients.Appl. Math. 32 (1987), 301–314. MR 0897834
Reference: [2] Bock, I., Lovíšek, J.: An optimal control problem for a pseudoparabolic variational inequality.Appl. Math. 37 (1992), 62–80. MR 1152158
Reference: [3] Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design.John Wiley and Sons, Chichester, 1996. MR 1419500
Reference: [4] Hlaváček, I., Bock, I., Lovíšek, J.: Optimal control of a variational inequality with applications to structural analysis.Applied Math. Optim. 11 (1984), 111–143. MR 0743922, 10.1007/BF01442173
Reference: [5] Hlaváček, I., Lovíšek, J.: Optimal design of an elastic plate with unilateral elastic foundation and rigid supports using Reissner-Mindlin model. I. Continuous problems; II. Approximate problems.Z. Angew. Math. Mech. 5 (1997), 377–385. 10.1002/zamm.19970770513
Reference: [6] Khludnev, A. M., Sokolowski, J.: Modelling and Control in Solid Mechanics.Birkhäuser Verlag, Basel, 1997. MR 1433133
Reference: [7] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Academic Press, New York, 1980. MR 0567696
Reference: [8] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [9] Myslinski, A., Sokolowski, J.: Nondifferentiable optimization problems for elliptic systems.SIAM J. Control Optim. 23 (1985), 632–648. MR 0791892, 10.1137/0323040
Reference: [10] Rodriguez, J.-F.: Obstacle Problems in Mathematical Physics.North-Holland Mathematical Studies 134, Amsterdam, 1987. MR 0880369
Reference: [11] Schwartz, L.: Théorie des Distributions.(Second edition). Hermann, Paris, 1966. Zbl 0149.09501, MR 0209834
.

Files

Files Size Format View
MathBohem_126-2001-2_4.pdf 340.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo