Previous |  Up |  Next

Article

Title: The far-field modelling of transonic compressible flows (English)
Author: Coclici, C. A.
Author: Sofronov, I. L.
Author: Wendland, W. L.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 293-305
Summary lang: English
.
Category: math
.
Summary: We present a method for the construction of artificial far-field boundary conditions for two- and three-dimensional exterior compressible viscous flows in aerodynamics. Since at some distance to the surrounded body (e.g. aeroplane, wing section, etc.) the convective forces are strongly dominant over the viscous ones, the viscosity effects are neglected there and the flow is assumed to be inviscid. Accordingly, we consider two different model zones leading to a decomposition of the original flow field into a bounded computational domain (near field) and a complementary outer region (far field). The governing equations as e.g. compressible Navier-Stokes equations are used in the near field, whereas the inviscid far field is modelled by Euler equations linearized about the free-stream flow. By treating the linear model analytically and numerically, we get artificial far-field boundary conditions for the (nonlinear) interior problem. In the two-dimensional case, the linearized Euler model can be handled by using complex analysis. Here, we present a heterogeneous coupling of the above-mentioned models and show some results for the flow around the NACA0012 airfoil. Potential theory is used for the three-dimensional case, leading also to non-local artificial far-field boundary conditions. (English)
Keyword: artificial boundary and transmission conditions
Keyword: compressible transonic flow
Keyword: linearized Euler equations
Keyword: integral equations with kernels of Cauchy type
Keyword: potential theory
Keyword: domain decomposition
MSC: 35M20
MSC: 35Q30
MSC: 35Q35
MSC: 45E05
MSC: 65M55
MSC: 76G25
MSC: 76H05
MSC: 76M25
MSC: 76M40
MSC: 76N17
MSC: 76N20
idZBL: Zbl 0980.35132
idMR: MR1844270
DOI: 10.21136/MB.2001.134026
.
Date available: 2009-09-24T21:50:45Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134026
.
Reference: [1] C. A. Coclici: Domain decomposition methods and far-field boundary conditions for two-dimensional compressible flows around airfoils.Doctoral Thesis, Math. Inst. A, University of Stuttgart, 1998. Zbl 0940.76032
Reference: [2] C. A. Coclici, I. L. Sofronov, W. L. Wendland: Far-field boundary conditions for 2D compressible viscous flows.In Numerical Modelling in Continuum Mechanics, M. Feistauer et al. (eds.) vol. 1, Matfyzpress Univerzita Karlova Praha, 1997, pp. 212–220.
Reference: [3] C. A. Coclici, W. L. Wendland: Analysis of a heterogeneous domain decomposition for compressible viscous flow.4 (2001) (to appear). MR 1832994
Reference: [4] D. Colton, R. Kress: Integral Equation Methods in Scattering Theory.John Wiley & Sons, New York, 1983. MR 0700400
Reference: [5] M. Feistauer: Mathematical Methods in Fluid Dynamics.Pitman Monographs and Surveys in Pure and Applied Math., Longman Sci. & Technical, Harlow, 1993. Zbl 0819.76001
Reference: [6] M. Feistauer, J. Felcman, M. Lukáčová-Medvidová: Combined finite element-finite volume solution of compressible flow.J. Comp. Appl. Math. 63 (1995), 179–199. MR 1365559, 10.1016/0377-0427(95)00051-8
Reference: [7] M. Feistauer, J. Nečas: On the solvability of transonic potential flow problems.Z. Anal. Anw. 4 (1985), 305–329. MR 0807140, 10.4171/ZAA/155
Reference: [8] L. Ferm: Open boundary conditions for external flow problems.J. Comput. Phys. 91 (1990), 55–70. Zbl 0711.76006, 10.1016/0021-9991(90)90004-K
Reference: [9] F. Gastaldi, A. Quarteroni: On the coupling of hyperbolic and parabolic systems: analytical and numerical approach.Appl. Num. Math. 6 (1990), 3–31. MR 1045016
Reference: [10] C. Hirsch: Numerical Computation of Internal and External Flows.Wiley, Chichester, 1988. Zbl 0662.76001
Reference: [11] A. Quarteroni, L. Stolcis: Homogeneous and heterogeneous domain decomposition for compressible fluid flows at high Reynolds numbers.Numerical Methods for Fluid Dynamics V, K. W. Morton, M. J. Baines (eds.), Oxford Univ. Press, 1995, pp. 113–128.
Reference: [12] V. S. Ryaben’kii, S. V. Tsynkov: Artificial boundary conditions for the numerical solution of external viscous flow problems.SIAM J. Numer. Anal. 32 (1995), 1355–1389. MR 1352195, 10.1137/0732063
Reference: [13] I. L. Sofronov: Coupling of potential and Euler equations to describe far field in 3D transonic flows.Book of Abstracts of the 2nd Seminar on Euler and Navier-Stokes Equations held in Prague, 1996, pp. 69–70.
Reference: [14] I. L. Sofronov, W. L. Wendland: Exact linear far-field conditions for three-dimensional aerodynamic stationary transonic flows.Preprint 99–16, Math. Inst. A, University of Stuttgart (1999). MR 1855901
Reference: [15] A. Verhoff, D. Stookesberry, S. Agrawal: Far-field computational boundary conditions for two-dimensional external flow problems.AIAA Journal 30 (1992), 2585–2594. 10.2514/3.11271
.

Files

Files Size Format View
MathBohem_126-2001-2_5.pdf 508.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo