Previous |  Up |  Next

Article

Title: On the solution of some inverse problems in infiltration (English)
Author: Constales, D.
Author: Kačur, J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 307-322
Summary lang: English
.
Category: math
.
Summary: In this paper we discuss inverse problems in infiltration. We propose an efficient method for identification of model parameters, e.g., soil parameters for unsaturated porous media. Our concept is strongly based on the finite speed of propagation of the wetness front during the infiltration into a dry region. We determine the unknown parameters from the corresponding ODE system arising from the original porous media equation. We use the automatic differentiation implemented in the ODE solver LSODA. Several numerical experiments are included. (English)
Keyword: porous media equation
Keyword: inverse problems
Keyword: Richard’s equation
Keyword: soil parameters for unsaturated porous media
Keyword: automatic differentiation
Keyword: numerical experiments
MSC: 35K57
MSC: 35R30
MSC: 35R35
MSC: 49M15
MSC: 49N45
MSC: 76S05
idZBL: Zbl 0978.35094
idMR: MR1844271
DOI: 10.21136/MB.2001.134025
.
Date available: 2009-09-24T21:50:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134025
.
Reference: [1] D. G. Aronson: Regularity properties of flows through porous media: The interface.Arch. Rational Mech. Anal. 37 (1970), 1–10. Zbl 0202.37901, MR 0255996, 10.1007/BF00249496
Reference: [2] L. A. Caffarelli, A. Friedman: Regularity of the free boundary for the one-dimensional flow of gas in a porous medium.Amer. J. Math. 101 (1979), 1193–1218. MR 0548877, 10.2307/2374136
Reference: [3] J. Chen, J. W. Hopmans, M. E. Grisnier: Parameter estimation of two-fluid capillary pressure-saturation and permeability functions.Advances in Water Resources 22 (1999), 479–493. 10.1016/S0309-1708(98)00025-6
Reference: [4] D. Constales: Automatic differentiation in LSODA. In preparation..
Reference: [5] D. Constales, J. Kačur: Inverse problems in porous media flow.Submitted to Computational Geosciences.
Reference: [6] S. O. Eching, J. W. Hopmans: Optimization of hydraulic functions from transient outflow and soil water data.Soil Sci. Soc. Am. J. 57 (1993), 1167–1175. 10.2136/sssaj1993.03615995005700050001x
Reference: [7] S. O. Eching, J. W. Hopmans, O. Wendroth: Unsaturated hydraulic conductivity from transient multistep outflow and soil water pressure.Soil Sci. Soc. Am. J. 58 (1994), 687–695. 10.2136/sssaj1994.03615995005800030008x
Reference: [8] B. H. Gilding: Flow and Transport in Porous Media.World Scientific, Singapore, 1992.
Reference: [9] A. S. Kalašnikov: Formation of singularities in solutions of the equation of nonstationary filtration.Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 440–444. MR 0211058
Reference: [10] O. A. Olejnik, A. S. Kalašnikov, Chzhou Jui-Lin: Cauchy problems and boundary-value problems for equations of type of infiltration.Izv. AN SSSR Ser. Mat. 5 (1958), 667–704. (Russian)
Reference: [11] L. R. Petzold: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations.SIAM J. Sci. Stat. Comput. 4 (1983), 136–148. Zbl 0518.65051, MR 0689694, 10.1137/0904010
Reference: [12] D. Russo, E. Bresler, U. Shani, J. C. Parker: Analysis of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology.Water Resources Research 27 (1991), 1361–1373. 10.1029/90WR02776
Reference: [13] C. J. van Duijn, L. A. Peletier: Nonstationary filtration in partially saturated porous media.Arch. Rational Mech. Anal. 78 (1982), 173–198. MR 0648943, 10.1007/BF00250838
Reference: [14] M. Th. van Genuchten: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci. Soc. Am. J. 44 (1980), 892–898. 10.2136/sssaj1980.03615995004400050002x
.

Files

Files Size Format View
MathBohem_126-2001-2_6.pdf 555.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo