Previous |  Up |  Next

Article

Title: Rank 1 convex hulls of isotropic functions in dimension 2 by 2 (English)
Author: Šilhavý, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 521-529
Summary lang: English
.
Category: math
.
Summary: Let $f$ be a rotationally invariant (with respect to the proper orthogonal group) function defined on the set $\text{M}^{2\times 2}$ of all $2$ by $2$ matrices. Based on conditions for the rank 1 convexity of $f$ in terms of signed invariants of $\mathbb{A}$ (to be defined below), an iterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given. (English)
Keyword: rank 1 convexity
Keyword: relaxation
Keyword: stored energies
MSC: 49J45
MSC: 74G65
MSC: 74N99
idZBL: Zbl 1070.49008
idMR: MR1844288
DOI: 10.21136/MB.2001.134029
.
Date available: 2009-09-24T21:53:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134029
.
Reference: [1] Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Rational Mech. Anal. 63 (1977), 337–403. Zbl 0368.73040, MR 0475169, 10.1007/BF00279992
Reference: [2] Buttazzo, G., Dacorogna, B., Gangbo, W.: On the envelopes of functions depending on singular values of matrices.Bolletino U. M. I. 7 (1994), 17–35. MR 1274317
Reference: [3] Dacorogna, B.: Direct Methods in the Calculus of Variations.Springer, Berlin, 1990. MR 2361288
Reference: [4] Kohn, R. V.: The relaxation of a double-well energy.Continuum Mech. Thermodyn. 3 (1991), 3–236. Zbl 0825.73029, MR 1122017, 10.1007/BF01135336
Reference: [5] Kohn, R. V., Strang, G.: Optimal design and relaxation of variational problems, I, II, III.Comm. Pure Appl. Math. 39 (1986), 113–137, 139–182, 353–377. MR 0820342, 10.1002/cpa.3160390305
Reference: [6] Morrey, Jr, C. B.: Multiple Integrals in the Calculus of Variations.Springer, New York, 1966. MR 0202511
Reference: [7] Rosakis, P.: Characterizat on of convex isotropic functions.J. Elasticity 49 (1997), 257–267. MR 1633494, 10.1023/A:1007468902439
Reference: [8] Roubíček, T.: Relaxation in optimization theory and variational calculus.W. de Gruyter, Berlin, 1997. MR 1458067
Reference: [9] Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media.Springer, Berlin, 1997. MR 1423807
Reference: [10] Šilhavý, M.: Convexity conditions for rotationally invariant functions in two dimensions.Applied Nonlinear Analysis, A. Sequeira et al. (eds.), Kluwer Academic, New York, 1999, pp. 513–530. MR 1727470
Reference: [11] Šilhavý, M.: Rank 1 convex hulls of rotationally invariant functions. In preparation..
.

Files

Files Size Format View
MathBohem_126-2001-2_23.pdf 308.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo