Previous |  Up |  Next

Article

Title: A priori estimates of solutions of superlinear problems (English)
Author: Quittner, Pavol
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 483-492
Summary lang: English
.
Category: math
.
Summary: In this survey we consider superlinear parabolic problems which possess both blowing-up and global solutions and we study a priori estimates of global solutions. (English)
Keyword: a priori estimate
Keyword: global existence
Keyword: parabolic equation
Keyword: superlinear nonlinearity
Keyword: blowing-up
MSC: 35B45
MSC: 35J65
MSC: 35K60
MSC: 35K65
idZBL: Zbl 0977.35029
idMR: MR1844285
DOI: 10.21136/MB.2001.134030
.
Date available: 2009-09-24T21:53:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134030
.
Reference: [1] H. Brezis, R. E. L. Turner: On a class of superlinear elliptic problems.Commun. Partial Differ. Equations 2 (1977), 601–614. MR 0509489, 10.1080/03605307708820041
Reference: [2] T. Cazenave, P.-L. Lions: Solutions globales d’équations de la chaleur semi linéaires.Commun. Partial Differ. Equations 9 (1984), 955–978. MR 0755928, 10.1080/03605308408820353
Reference: [3] Ph. Clément, D. G. de Figueiredo, E. Mitidieri: A priori estimates for positive solutions of semilinear elliptic systems via Hardy-Sobolev inequalities.Nonlinear partial differential equations, A. Benkirane at al (eds.), Pitman Research Notes in Math. 343, Harlow, Longman, 1996, pp. 73–91. MR 1417272
Reference: [4] M. Escobedo, M. A. Herrero: Boundedness and blow up for a semilinear reaction-diffusion system.J. Differ. Equations 89 (1991), 176–202. MR 1088342, 10.1016/0022-0396(91)90118-S
Reference: [5] M. Fila, P. Souplet, F. Weissler: Linear and nonlinear heat equations in $L^p_\delta $ spaces and universal bounds for global solutions.Preprint. MR 1835063
Reference: [6] V. Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions.Commun. Pure Applied Math. 50 (1997), 1–67. MR 1423231, 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H
Reference: [7] B. Gidas, J. Spruck: A priori bounds for positive solutions of nonlinear elliptic equations.Commun. Partial Differ. Equations 6 (1991), 883–901. MR 0619749
Reference: [8] Y. Giga: A bound for global solutions of semilinear heat equations.Commun. Math. Phys. 103 (1986), 415–421. Zbl 0595.35057, MR 0832917, 10.1007/BF01211756
Reference: [9] Y. Giga, R. V. Kohn: Characterizing blowup using similarity variables.Indiana Univ. Math. J. 36 (1987), 1–40. MR 0876989, 10.1512/iumj.1987.36.36001
Reference: [10] Y. Gu, M. Wang: Existence of positive stationary solutions and threshold results for a reaction-diffusion system.J. Differ. Equations 130 (1996), 277–291. MR 1410888, 10.1006/jdeq.1996.0143
Reference: [11] B. Hu: Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition.Differ. Integral Equations 9 (1996), 891–901. MR 1392086
Reference: [12] S. Kaplan: On the growth of solutions of quasi-linear parabolic equations.Commun. Pure Appl. Math. 16 (1963), 305–330. Zbl 0156.33503, MR 0160044, 10.1002/cpa.3160160307
Reference: [13] H. A. Levine: A Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations.Z. Angew. Math. Phys. 42 (1992), 408–430. MR 1115199
Reference: [14] W.-M. Ni, P. E. Sacks, J. Tavantzis: On the asymptotic behavior of solutions of certain quasilinear parabolic equations.J. Differ. Equations 54 (1984), 97–120. MR 0756548, 10.1016/0022-0396(84)90145-1
Reference: [15] P. Quittner: A priori bounds for global solutions of a semilinear parabolic problem.Acta Math. Univ. Comenianae 68 (1999), 195–203. Zbl 0940.35112, MR 1757788
Reference: [16] P. Quittner: Universal bound for global positive solutions of a superlinear parabolic problem.Preprint. Zbl 0981.35010, MR 1839765
Reference: [17] P. Quittner: Signed solutions for a semilinear elliptic problem.Differ. Integral Equations 11 (1998), 551–559. Zbl 1131.35339, MR 1666269
Reference: [18] P. Quittner: A priori estimates of global solutions and multiple equilibria of a parabolic problem involving measure.Preprint.
Reference: [19] P. Quittner: Transition from decay to blow-up in a parabolic system.Arch. Math. (Brno) 34 (1998), 199–206. Zbl 0911.35062, MR 1629705
Reference: [20] P. Quittner, Ph. Souplet: In preparation..
Reference: [21] H. Zou: Existence of positive solutions of semilinear elliptic systems without variational structure.Preprint.
.

Files

Files Size Format View
MathBohem_126-2001-2_20.pdf 329.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo