Previous |  Up |  Next

Article

Title: Steady-state buoyancy-driven viscous flow with measure data (English)
Author: Roubíček, Tomáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 493-504
Summary lang: English
.
Category: math
.
Summary: Steady-state system of equations for incompressible, possibly non-Newtonean of the $p$-power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain $\Omega \subset \mathbb{R}^n$, $n=2$ or 3, with heat sources allowed to have a natural $L^1$-structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if $p>3/2$ (for $n=2$) or if $p>9/5$ (for $n=3$). (English)
Keyword: non-Newtonean fluids
Keyword: heat equation
Keyword: dissipative heat
Keyword: adiabatic heat
MSC: 35J60
MSC: 35Q35
MSC: 76A05
MSC: 76D03
MSC: 80A20
idZBL: Zbl 0981.35054
idMR: MR1844286
DOI: 10.21136/MB.2001.134009
.
Date available: 2009-09-24T21:53:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134009
.
Reference: [1] Alibert, J. J., Raymond, J. P.: Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls.Numer. Funct. Anal. Optim. 18 (1997), 235–250. MR 1448889, 10.1080/01630569708816758
Reference: [2] Baranger, J., Mikelič, A.: Stationary solutions to a quasi-Newtonean flow with viscous heating.Math. Models Methods Appl. Sci. 5 (1995), 725–738. MR 1348583, 10.1142/S0218202595000401
Reference: [3] Bayly, B. J., Levermore, C. D., Passot T.: Density variations in weakly compressible flows.Phys. Fluids A 4 (1992), 945–954. MR 1160287, 10.1063/1.858275
Reference: [4] Frehse, J., Málek, J., Steinhauer, M.: An existence result for fluids with shear dependent viscosity-steady flows.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041–3049. MR 1602949, 10.1016/S0362-546X(97)00392-1
Reference: [5] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.: Buoyancy-Induced Flows and Transport.Hemisphere Publ., Washington, 1988.
Reference: [6] Kagei, Y.: Attractors for two-dimensional equations of thermal convection in the presence of the dissipation function.Hiroshima Math. J. 25 (1995), 251–311. Zbl 0843.35074, MR 1336900, 10.32917/hmj/1206127712
Reference: [7] Kagei, Y., Růžička, M., Thäter, G.: Natural convection with dissipative heating.(to appear). MR 1796023
Reference: [8] Kaplický, P., Málek, J., Stará, J.: $C^{1,\alpha }$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem.Zapisky nauchnych seminarov POMI (Sankt Peterburg) 259 (1999), 89–121.
Reference: [9] Landau, L. D., Lifshitz, E. M.: Fluid Mechanics.Pergamon Press, London, 1959. MR 0108121
Reference: [10] Lions, J. L.: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [11] Lions, J. L., Magenes, E.: Problèmes aux limites non homogènes.Dunod, Paris, 1968.
Reference: [12] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to the Evolutionary PDE’s.Chapman & Hall, London, 1996. MR 1409366
Reference: [13] Málek, J., Růžička, M., Thäter, G.: Fractal dimension, attractors and Boussinesq approximation in three dimensions.Act. Appl. Math. 37 (1994), 83–98. 10.1007/BF00995132
Reference: [14] Moseenkov, V. B.: Kachestvenyje metody issledovaniya zadach konvekciĭ slabo szhimaemoĭ zhidkosti.Inst. Mat. NAN Ukraïni, Kiïv, 1998. MR 1742952
Reference: [15] Nečas, J.: Les méthodes directes dans la théorie des équations elliptiques.Academia, Prague, 1967.
Reference: [16] Nečas, J., Roubíček, T.: Buoyancy-driven viscous flow with $L^1$-data.(to appear).
Reference: [17] Rabinowitz, P.: Existence and nonuniqueness of rectangular solutions of the Bénard problems.Arch. Rational Mech. Anal. 29 (1968), 32–57. MR 0233557, 10.1007/BF00256457
Reference: [18] Rajagopal, K. R., Růžička, M., Srinivasa, A. R.: On the Oberbeck-Boussinesq Approximation.Math. Models Methods Appl. Sci. 6 (1996), 1157–1167. MR 1428150, 10.1142/S0218202596000481
Reference: [19] Rodriguez, J. F.: A steady-state Boussinesq-Stefan problem with continuous extraction.Annali Mat. Pura Appl. IV 144 (1986), 203–218. MR 0870877
Reference: [20] Rodriguez, J. F., Urbano, J. M.: On a three-dimensional convective Stefan problem for a non-Newtonian fluid.Nonlinear Applied Analysis, A. Sequiera et al. (eds.), Plenum Press, 1999, pp. 457–468. MR 1727466
Reference: [21] Roubíček, T.: Nonlinear heat equation with $L^1$-data.Nonlinear Diff. Eq. Appl. 5 (1998), 517–527.
Reference: [22] Růžička, M.: A note on steady flow fluids with shear dependent viscosity.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029–3039. MR 1602945, 10.1016/S0362-546X(97)00391-X
Reference: [23] Turcotte, D. L., Hsui, A. T., Torrance, K. E., Schubert, G.: Influence of viscous dissipation on Bénard convection.J. Fluid Mech. 64 (1974), 369–374. 10.1017/S0022112074002448
.

Files

Files Size Format View
MathBohem_126-2001-2_21.pdf 391.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo