Previous |  Up |  Next

Article

Title: On the $\sigma $-finiteness of a variational measure (English)
Author: Caponetti, Diana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 2
Year: 2003
Pages: 137-146
Summary lang: English
.
Category: math
.
Summary: The $\sigma $-finiteness of a variational measure, generated by a real valued function, is proved whenever it is $\sigma $-finite on all Borel sets that are negligible with respect to a $\sigma $-finite variational measure generated by a continuous function. (English)
Keyword: variational measure
Keyword: $H$-differentiable
Keyword: $H$-density
MSC: 26A24
MSC: 26A39
MSC: 26A45
MSC: 28A15
idZBL: Zbl 1027.26007
idMR: MR1995568
DOI: 10.21136/MB.2003.134037
.
Date available: 2009-09-24T22:07:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134037
.
Reference: [1] B. Bongiorno: Essential variations.Springer Lecture Notes Math. 945 (1981), 187–193. MR 0675282
Reference: [2] B. Bongiorno, L. Di Piazza, V. Skvortsov: A new full descriptive characterization of Denjoy-Perron integral.Real Anal. Exch. 21 (1995/96), 656–663. MR 1407278, 10.2307/44152676
Reference: [3] B. Bongiorno, L. Di Piazza, V. Skvortsov: On variational measures related to some bases.J. Math. Anal. Appl. 250 (2000), 533–547. MR 1786079, 10.1006/jmaa.2000.6983
Reference: [4] B. Bongiorno, L. Di Piazza, D. Preiss: Infinite variation and derivatives in $\mathbb{R}^m$.J. Math. Anal. Appl. 224 (1998), 22–33. MR 1632942, 10.1006/jmaa.1998.5982
Reference: [5] Z. Buczolich, W. F. Pfeffer: When absolutely continuous implies $\sigma $-finite.Bull. Csi., Acad. Royale Belgique, serie 6 (1997), 155–160. MR 1625113
Reference: [6] Z. Buczolich, W. F. Pfeffer: Variations of additive functions.Czechoslovak Math. J. 47 (1997), 525–555. MR 1461431, 10.1023/A:1022471719916
Reference: [7] J. L. Doob: Measure Theory.Springer, New-York, 1994. Zbl 0791.28001, MR 1253752
Reference: [8] L. Di Piazza: Variational measures in the theory of the integration in $\mathbb{R}^m$.Czechoslovak Math. J. 51 (2001), 95–110. MR 1814635, 10.1023/A:1013705821657
Reference: [9] V. Ene: Thomson’s variational measure and nonabsolutely convergent integrals.Real Anal. Exch. 26 (2000/01), 35–50. MR 1825496
Reference: [10] C.-A. Faure: A descriptive definition of the KH-Stieltjes integral.Real Anal. Exch. 23 (1997/98), 113–124. MR 1609775
Reference: [11] P. Mattila: Geometry of sets and measures in Euclidean spaces.Cambridge University Press, 1995. Zbl 0819.28004, MR 1333890
Reference: [12] W. F. Pfeffer: The Riemann Approach to Integration.Cambridge University Press, 1993. Zbl 0804.26005, MR 1268404
Reference: [13] W. F. Pfeffer: On additive continuous functions of figures.Rend. Istit. Mat. Univ. Trieste, suppl. (1998), 115–133. Zbl 0921.26008, MR 1696024
Reference: [14] W. F. Pfeffer: The Lebesgue and Denjoy-Perron integrals from a descriptive point of view.Ricerche Mat. 48 (1999), 211–223. Zbl 0951.26005, MR 1760817
Reference: [15] C. A. Rogers: Hausdorff Measures.Cambridge, 1970. Zbl 0204.37601, MR 0281862
Reference: [16] S. Saks: Theory of the Integral.Dover, New York, 1964. MR 0167578
Reference: [17] B. S. Thomson: Derivates of interval functions.Mem. Amer. Math. Soc., Providence 452 (1991). Zbl 0734.26003, MR 1078198
Reference: [18] B. S. Thomson: Some properties of variational measures.Real Anal. Exch. 24 (1998/99), 845–853. MR 1704758, 10.2307/44153004
.

Files

Files Size Format View
MathBohem_128-2003-2_3.pdf 330.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo