Previous |  Up |  Next

Article

Title: Micro tangent sets of continuous functions (English)
Author: Buczolich, Zoltán
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 2
Year: 2003
Pages: 147-167
Summary lang: English
.
Category: math
.
Summary: Motivated by the concept of tangent measures and by H. Fürstenberg’s definition of microsets of a compact set $A$ we introduce micro tangent sets and central micro tangent sets of continuous functions. It turns out that the typical continuous function has a rich (universal) micro tangent set structure at many points. The Brownian motion, on the other hand, with probability one does not have graph like, or central graph like micro tangent sets at all. Finally we show that at almost all points Takagi’s function is graph like, and Weierstrass’s nowhere differentiable function is central graph like. (English)
Keyword: typical continuous function
Keyword: Brownian motion
Keyword: Takagi’s function
Keyword: Weierstrass’s function
MSC: 26A15
MSC: 26A24
MSC: 26A27
MSC: 28A78
MSC: 60J65
idZBL: Zbl 1027.26003
idMR: MR1995569
DOI: 10.21136/MB.2003.134036
.
Date available: 2009-09-24T22:08:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134036
.
Reference: [1] P. Billingsley: Probability and Measure. Third edition.John Wiley, Chichester, 1995. MR 1324786
Reference: [2] K. Falconer: Fractal Geometry.John Wiley, Chichester, 1990. Zbl 0689.28003, MR 1102677
Reference: [3] K. Falconer: Techniques in Fractal Geometry.John Wiley, Chichester, 1997. Zbl 0869.28003, MR 1449135
Reference: [4] K. Falconer: Tangent fields and the local structure of random fields.J. Theoret. Probab. 15 (2002), no. 3, 731–750. Zbl 1013.60028, MR 1922445, 10.1023/A:1016276016983
Reference: [5] K. Falconer: The local structure of random processes.Preprint. Zbl 1054.28003, MR 1967698
Reference: [6] H. Fürstenberg: Ergodic Theory and the Geometry of Fractals, talk given at the conference Fractals in Graz, 2001, http://finanz.math.tu-graz.ac.at/$\sim $fractal..
Reference: [7] B. R. Gelbaum: Modern Real and Complex Analysis.John Wiley, New York, 1995. MR 1325692
Reference: [8] G. H. Hardy: Weierstrass’s non-differentiable function.Trans. Amer. Math. Soc. 17 (1916), 301–325. MR 1501044
Reference: [9] P. Humke, G. Petruska: The packing dimension of a typical continuous function is 2.Real Anal. Exch. 14 (1988–89), 345–358. MR 0995975
Reference: [10] S. Jaffard: Old friends revisited: the multifractal nature of some classical functions.J. Fourier Anal. Appl. 3 (1997), 1–22. Zbl 0880.28007, MR 1428813, 10.1007/BF02647944
Reference: [11] S. V. Levizov: On the central limit theorem for series with respect to periodical multiplicative systems I.Acta Sci. Math. (Szeged) 55 (1991), 333–359. Zbl 0759.42018, MR 1152596
Reference: [12] S. V. Levizov: Weakly lacunary trigonometric series.Izv. Vyssh. Uchebn. Zaved. Mat. (1988), 28–35, 86–87. Zbl 0713.42011, MR 0938430
Reference: [13] N. N. Luzin: Sur les propriétés des fonctions mesurables.C. R. Acad. Sci. Paris 154 (1912), 1688–1690.
Reference: [14] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces.Cambridge University Press, 1995. Zbl 0819.28004, MR 1333890
Reference: [15] P. Mattila: Tangent measures, densities, and singular integrals.Fractal geometry and stochastics (Finsterbergen, 1994), 43–52, Progr. Probab. 37, Birkhäuser, Basel, 1995. Zbl 0837.28006, MR 1391970
Reference: [16] R. D. Mauldin, S. C. Williams: On the Hausdorff dimension of some graphs.Trans. Amer. Math. Soc. 298 (1986), 793–803. MR 0860394, 10.1090/S0002-9947-1986-0860394-7
Reference: [17] D. Preiss: Geometry of measures in $\mathbb{R}^{n}$: distribution, rectifiability, and densities.Ann. Math., II. Ser. 125 (1987), 537–643. MR 0890162, 10.2307/1971410
Reference: [18] D. Preiss, L. Zajíček: On Dini and approximate Dini derivates of typical continuous functions.Real Anal. Exch. 26 (2000/01), 401–412. MR 1825518
Reference: [19] S. Saks: Theory of the Integral.Second Revised (ed.), Dover, New York, 1964. MR 0167578
Reference: [20] L. Zajíček: On preponderant differentiability of typical continuous functions.Proc. Amer. Math. Soc. 124 (1996), 789–798. MR 1291796, 10.1090/S0002-9939-96-03057-2
.

Files

Files Size Format View
MathBohem_128-2003-2_4.pdf 423.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo