Previous |  Up |  Next

Article

Title: A note on equality of functional envelopes (English)
Author: Kružík, Martin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 2
Year: 2003
Pages: 169-178
Summary lang: English
.
Category: math
.
Summary: We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in $\mathbb{R}^{m\times n}$, $\min (m,n)\le 2$, then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit convexity assumptions on the quasiconvex (polyconvex) envelope. (English)
Keyword: extreme points
Keyword: polyconvexity
Keyword: quasiconvexity
Keyword: rank-1 convexity
Keyword: lower semicontinuous function
MSC: 49J10
MSC: 49J45
MSC: 52A05
MSC: 52A20
idZBL: Zbl 1028.49007
idMR: MR1995570
DOI: 10.21136/MB.2003.134039
.
Date available: 2009-09-24T22:08:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134039
.
Reference: [1] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations.Arch. Rat. Mech. Anal. 86 (1986), 125–145. MR 0751305
Reference: [2] E. M. Alfsen: Compact Convex Sets and Boundary Integrals.Springer, Berlin, 1971. Zbl 0209.42601, MR 0445271
Reference: [3] J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Rat. Mech. Anal. 63 (1977), 337–403. Zbl 0368.73040, MR 0475169
Reference: [4] J. M. Ball: A version of the fundamental theorem for Young measures.PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre, M. Slemrod (eds.), Lecture Notes in Physics 344, Springer, Berlin, 1989, pp. 207–215. Zbl 0991.49500, MR 1036070
Reference: [5] K. Bhattacharya, N. B. Firoozye, R. D. James, R. V. Kohn: Restriction on microstructure.Proc. Roy. Soc. Edinburgh 124A (1994), 843–878. MR 1303758
Reference: [6] B. Dacorogna: Direct Methods in the Calculus of Variations.Springer, Berlin, 1989. Zbl 0703.49001, MR 0990890
Reference: [7] G. Dolzmann, B. Kirchheim, J. Kristensen: Conditions for equality of hulls in the calculus of variations.Arch. Rat. Mech. Anal. 154 (2000), 93–100. MR 1784961, 10.1007/s002050000098
Reference: [8] D. Kinderlehrer, P. Pedregal: Characterizations of Young measures generated by gradients.Arch. Rat. Mech. Anal. 115 (1991), 329–365. MR 1120852, 10.1007/BF00375279
Reference: [9] D. Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in Sobolev spaces.J. Geom. Anal. 4 (1994), 59–90. MR 1274138, 10.1007/BF02921593
Reference: [10] M. Kružík: Bauer’s maximum principle and hulls of sets.Calc. Var. Partial Differential Equations 11 (2000), 321–332. MR 1797873, 10.1007/s005260000047
Reference: [11] M. Kružík: Quasiconvex extreme points of convex sets.(to appear). MR 1937535
Reference: [12] J. Matoušek, P. Plecháč: On functional separately convex hulls.Discrete Comput. Geom. 19 (1998), 105–130. MR 1486640, 10.1007/PL00009331
Reference: [13] C. B. Morrey, Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals.Pacific J. Math. 2 (1952), 25–53. Zbl 0046.10803, MR 0054865, 10.2140/pjm.1952.2.25
Reference: [14] C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations.Springer, Berlin, 1966. Zbl 0142.38701
Reference: [15] S. Müller: Variational Models for Microstructure and Phase Transitions.Lecture Notes of the Max-Planck-Institute No. 2, Leipzig, 1998. MR 1731640
Reference: [16] P. Pedregal: Laminates and microstructure.Europ. J. Appl. Math. 4 (1993), 121–149. Zbl 0779.73050, MR 1228114
Reference: [17] P. Pedregal: Parametrized Measures and Variational Principles.Birhäuser, Basel, 1997. Zbl 0879.49017, MR 1452107
Reference: [18] V. Šverák: Rank-one convexity does not imply quasiconvexity.Proc. Roy. Soc. Edinburgh 120 (1992), 185–189. MR 1149994
Reference: [19] K. Zhang: On the structure of quasiconvex hulls.Ann. Inst. H. Poincaré, Ann. Non Linéaire 15 (1998), 663–686. Zbl 0917.49014, MR 1650974, 10.1016/S0294-1449(99)80001-8
Reference: [20] K. Zhang: On various semiconvex hulls in the calculus of variations.Calc. Var. Partial Differential Equations 6 (1998), 143–160. Zbl 0896.49005, MR 1606473, 10.1007/s005260050086
Reference: [21] K. Zhang: On some semiconvex envelopes.NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 37–44. Zbl 1012.49012, MR 1891694, 10.1007/s00030-002-8117-x
.

Files

Files Size Format View
MathBohem_128-2003-2_5.pdf 338.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo