Previous |  Up |  Next

Article

Title: Urysohn’s lemma, gluing lemma and contraction$^*$ mapping theorem for fuzzy metric spaces (English)
Author: Roja, E.
Author: Uma, M. K.
Author: Balasubramanian, G.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959
Volume: 133
Issue: 2
Year: 2008
Pages: 179-185
Summary lang: English
.
Category: math
.
Summary: In this paper the concept of a fuzzy contraction$^*$ mapping on a fuzzy metric space is introduced and it is proved that every fuzzy contraction$^*$ mapping on a complete fuzzy metric space has a unique fixed point. (English)
Keyword: fuzzy contraction mapping
Keyword: fuzzy continuous mapping
MSC: 03E72
MSC: 54A40
MSC: 54E35
MSC: 54H25
idZBL: Zbl 1199.54243
idMR: MR2428313
.
Date available: 2009-09-24T22:36:01Z
Last updated: 2012-06-18
Stable URL: http://hdl.handle.net/10338.dmlcz/134052
.
Reference: [1] M. A. Erceg: Metric spaces in fuzzy set theory.J. Math. Anal. Appl. 69 (1979), 205–230. Zbl 0409.54007, MR 0535292
Reference: [2] A. George, P. Veeramani: On some results in fuzzy metric spaces.Fuzzy Sets Syst. 64 (1994), 395–399. MR 1289545
Reference: [3] A. George, P. Veeramani: Some theorems in fuzzy metric spaces.J. Fuzzy Math. 3 (1995), 933–940. MR 1367026
Reference: [4] A. George, P. Veeramani: On some results of analysis for fuzzy metric spaces.Fuzzy Sets Syst. 90 (1997), 365–368. MR 1477836
Reference: [5] O. Kaleva, S. Seikkala: On fuzzy metric spaces.Fuzzy Sets Syst. 12 (1984), 215–229. MR 0740095
Reference: [6] G. Rajendran, G. Balasubramanian: Fuzzy contraction mapping theorem for fuzzy metric spaces.Bull. Calcutta Math. Soc. 94 (2002), 453–458. MR 1947762
Reference: [7] L. A. Zadeh: Fuzzy sets.Inform and Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427
Reference: [8] Zi-Ke, Deng: Fuzzy pseudo metric spaces.J. Math. Anal. Appl. 86 (1982), 74–95.
.

Files

Files Size Format View
MathBohem_133-2008-2_7.pdf 194.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo