Previous |  Up |  Next

Article

Title: A remark on power comparison theorem for half-linear differential equations (English)
Author: Bognár, Gabriella
Author: Došlý, Ondřej
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 187-195
Summary lang: English
.
Category: math
.
Summary: We consider the half-linear second order differential equation which is viewed as a perturbation of the so-called Riemann-Weber half-linear differential equation. We present a comparison theorem with respect to the power of the half-linearity in the equation under consideration. Our research is motivated by the recent results published by J. Sugie, N. Yamaoka, Acta Math. Hungar. 111 (2006), 165–179. (English)
Keyword: Riemann-Weber half-linear equation
Keyword: Riccati technique
Keyword: power comparison theorem
Keyword: perturbation principle
Keyword: principal solution
MSC: 34C10
idZBL: Zbl 1199.34168
idMR: MR2428314
DOI: 10.21136/MB.2008.134060
.
Date available: 2009-09-24T22:36:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134060
.
Reference: [1] R. P. Agarwal, S. R. Grace, D. O’Regan: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht, 2002. MR 2091751
Reference: [2] O. Došlý: Perturbations of the half-linear Euler-Weber type differential equation.J. Math. Anal. Appl. 323 (2006), 426–440. Zbl 1107.34030, MR 2262216, 10.1016/j.jmaa.2005.10.051
Reference: [3] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations.Hiroshima Math. J. 36 (2006), 203–219. MR 2259737, 10.32917/hmj/1166642300
Reference: [4] O. Došlý, P. Řehák: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903
Reference: [5] Á. Elbert: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591
Reference: [6] Á. Elbert: Oscillation and nonoscillation theorems for some non-linear ordinary differential equations.Lect. Notes Math. 964 (1982), 187–212. 10.1007/BFb0064999
Reference: [7] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. 18 (1998), 745–759.
Reference: [8] Á. Elbert, A. Schneider: Perturbations of the half-linear Euler differential equation.Result. Math. 37 (2000), 56–83. MR 1742294, 10.1007/BF03322512
Reference: [9] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorem for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. MR 0402184, 10.1016/0022-247X(76)90120-7
Reference: [10] J. D. Mirzov: On the principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
Reference: [11] P. Řehák: On certain comparison theorems for half-linear dynamic equations on time scales.Abstr. Appl. Anal. 7 (2004), 551–564. Zbl 1106.34019, MR 2084935
Reference: [12] J. Sugie, N. Yamaoka: Growth conditions and oscillation of nonlinear differential equations with $p$-Laplacian.J. Math. Anal. Appl. 305 (2005), 18–34. MR 2132886
Reference: [13] J. Sugie, N. Yamaoka: Comparison theorems for oscillation of second-order half-linear differential equations.Acta Math. Hungar. 111 (2006), 165–179. MR 2188979, 10.1007/s10474-006-0029-5
.

Files

Files Size Format View
MathBohem_133-2008-2_8.pdf 251.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo