Title:
|
A remark on power comparison theorem for half-linear differential equations (English) |
Author:
|
Bognár, Gabriella |
Author:
|
Došlý, Ondřej |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
133 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
187-195 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the half-linear second order differential equation which is viewed as a perturbation of the so-called Riemann-Weber half-linear differential equation. We present a comparison theorem with respect to the power of the half-linearity in the equation under consideration. Our research is motivated by the recent results published by J. Sugie, N. Yamaoka, Acta Math. Hungar. 111 (2006), 165–179. (English) |
Keyword:
|
Riemann-Weber half-linear equation |
Keyword:
|
Riccati technique |
Keyword:
|
power comparison theorem |
Keyword:
|
perturbation principle |
Keyword:
|
principal solution |
MSC:
|
34C10 |
idZBL:
|
Zbl 1199.34168 |
idMR:
|
MR2428314 |
DOI:
|
10.21136/MB.2008.134060 |
. |
Date available:
|
2009-09-24T22:36:11Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134060 |
. |
Reference:
|
[1] R. P. Agarwal, S. R. Grace, D. O’Regan: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht, 2002. MR 2091751 |
Reference:
|
[2] O. Došlý: Perturbations of the half-linear Euler-Weber type differential equation.J. Math. Anal. Appl. 323 (2006), 426–440. Zbl 1107.34030, MR 2262216, 10.1016/j.jmaa.2005.10.051 |
Reference:
|
[3] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations.Hiroshima Math. J. 36 (2006), 203–219. MR 2259737, 10.32917/hmj/1166642300 |
Reference:
|
[4] O. Došlý, P. Řehák: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903 |
Reference:
|
[5] Á. Elbert: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591 |
Reference:
|
[6] Á. Elbert: Oscillation and nonoscillation theorems for some non-linear ordinary differential equations.Lect. Notes Math. 964 (1982), 187–212. 10.1007/BFb0064999 |
Reference:
|
[7] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. 18 (1998), 745–759. |
Reference:
|
[8] Á. Elbert, A. Schneider: Perturbations of the half-linear Euler differential equation.Result. Math. 37 (2000), 56–83. MR 1742294, 10.1007/BF03322512 |
Reference:
|
[9] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorem for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. MR 0402184, 10.1016/0022-247X(76)90120-7 |
Reference:
|
[10] J. D. Mirzov: On the principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343 |
Reference:
|
[11] P. Řehák: On certain comparison theorems for half-linear dynamic equations on time scales.Abstr. Appl. Anal. 7 (2004), 551–564. Zbl 1106.34019, MR 2084935 |
Reference:
|
[12] J. Sugie, N. Yamaoka: Growth conditions and oscillation of nonlinear differential equations with $p$-Laplacian.J. Math. Anal. Appl. 305 (2005), 18–34. MR 2132886 |
Reference:
|
[13] J. Sugie, N. Yamaoka: Comparison theorems for oscillation of second-order half-linear differential equations.Acta Math. Hungar. 111 (2006), 165–179. MR 2188979, 10.1007/s10474-006-0029-5 |
. |