Previous |  Up |  Next

Article

Title: Trivial generators for nontrivial fibres (English)
Author: Carlsson, Linus
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 121-131
Summary lang: English
.
Category: math
.
Summary: Pseudoconvex domains are exhausted in such a way that we keep a part of the boundary fixed in all the domains of the exhaustion. This is used to solve a problem concerning whether the generators for the ideal of either the holomorphic functions continuous up to the boundary or the bounded holomorphic functions, vanishing at a point in $\mathbb{C}^{n}$ where the fibre is nontrivial, has to exceed $n$. This is shown not to be the case. (English)
Keyword: holomorphic function
Keyword: Banach algebra
Keyword: generator
MSC: 32A65
MSC: 32W05
MSC: 46J20
idZBL: Zbl 1199.32021
idMR: MR2428308
DOI: 10.21136/MB.2008.134053
.
Date available: 2009-09-24T22:35:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134053
.
Reference: [1] Kenzō Adachi: Continuation of bounded holomorphic functions from certain subvarieties to weakly pseudoconvex domains.Pacific J. Math. 130 (1987), 1–8. MR 0910650, 10.2140/pjm.1987.130.1
Reference: [2] Ulf Backlund, Anders Fällström: Counterexamples to the Gleason problem.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998), 595–603. MR 1635710
Reference: [3] Linus Carlsson, Urban Cegrell, Anders Fällström: Spectrum of certain Banach algebras and $\overline{\partial }$ problems.Ann. Pol. Math. 90 (2007), 51–58. MR 2283112, 10.4064/ap90-1-4
Reference: [4] So-Chin Chen, Mei-Chi Shaw: Partial Differential Equations in Several Complex Variables, vol. 19 of AMS/IP Studies in Advanced Mathematics.American Mathematical Society, Providence, RI, 2001. MR 1800297
Reference: [5] Klas Diederich, John Erik Fornaess: Pseudoconvex domains: an example with nontrivial nebenhülle.Math. Ann. 225 (1977), 275–292. MR 0430315, 10.1007/BF01425243
Reference: [6] Andrew M. Gleason: Finitely generated ideals in Banach algebras.J. Math. Mech. 13 (1964), 125–132. MR 0159241
Reference: [7] Pengfei Guan: The extremal function associated to intrinsic norms.Ann. Math. 156 (2002), 197–211. MR 1935845
Reference: [8] Gennadi Henkin, Jürgen Leiterer: Theory of Functions on Complex Manifolds.Monographs in Mathematics vol. 79, Birkhäuser, Basel, 1984. MR 0774049
Reference: [9] Marek Jarnicki, Peter Pflug: Extension of Holomorphic Functions.Expositions in Mathematics vol. 34, Walter de Gruyter, Berlin, 2000. MR 1797263
Reference: [10] Nils Øvrelid: Generators of the maximal ideals of $A(\bar{D})$.Pacific J. Math. 39 (1971), 219–223. MR 0310292, 10.2140/pjm.1971.39.219
.

Files

Files Size Format View
MathBohem_133-2008-2_2.pdf 285.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo