Previous |  Up |  Next

Article

Title: Une application du lemme de Mittag-Leffler dans la categorie des quotients d’espaces de Frechet (French)
Title: Application of the Mittag-Leffler lemma in the category of quotients of Fréchet spaces (English)
Author: Aqzzouz, Belmesnaoui
Language: French
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 113-119
Summary lang: English
.
Category: math
.
Summary: An application of Mittag-Leffler lemma in the category of quotients of Fréchet spaces. We use Mittag-Leffler Lemma to prove that for a nonempty interval $]a,b[\subset \mathbb{R}$, the restriction mapping $H^{\infty }(]a,b[+\mathrm{i}\mathbb{R}) \rightarrow C^{\infty }\left( ]a,b[\right)$ is surjective and we give a corollary. (English)
Keyword: Fréchet space
Keyword: projective limit
Keyword: surjective mapping
MSC: 46A04
MSC: 46M05
MSC: 46M15
MSC: 46M40
idZBL: Zbl 1199.46163
idMR: MR2428307
DOI: 10.21136/MB.2008.134054
.
Date available: 2009-09-24T22:35:08Z
Last updated: 2021-11-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134054
.
Reference: [1] B. Aqzzouz, R. Nouira: L’exactitude du foncteur limite projective sur la catégorie des quotients d’espaces de Fréchet.(to appear).
Reference: [2] V. P. Palamodov: The projective limit functor in the category of topological linear spaces.Mat. Sb. (N.S.) 75 (1968), 567–603. (Russian) MR 0223851
Reference: [3] V. P. Palamodov: Homological methods in the theory of locally convex spaces.Usp. Mat. Nauk 26 (1971), 3–65. (Russian) Zbl 0247.46070, MR 0293365
Reference: [4] L. Waelbroeck: Quotient Fréchet spaces.Rev. Roum. Math. Pures Appl. 34 (1989), 171–179. Zbl 0696.46052, MR 1005909
Reference: [5] J. Wengenroth: Derived Functors in Functional Analysis.Lect. Notes Math. 1810, Springer, Berlin, 2003. Zbl 1031.46001, MR 1977923
.

Files

Files Size Format View
MathBohem_133-2008-2_1.pdf 627.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo