Title:
|
Une application du lemme de Mittag-Leffler dans la categorie des quotients d’espaces de Frechet (French) |
Title:
|
Application of the Mittag-Leffler lemma in the category of quotients of Fréchet spaces (English) |
Author:
|
Aqzzouz, Belmesnaoui |
Language:
|
French |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
133 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
113-119 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An application of Mittag-Leffler lemma in the category of quotients of Fréchet spaces. We use Mittag-Leffler Lemma to prove that for a nonempty interval $]a,b[\subset \mathbb{R}$, the restriction mapping $H^{\infty }(]a,b[+\mathrm{i}\mathbb{R}) \rightarrow C^{\infty }\left( ]a,b[\right)$ is surjective and we give a corollary. (English) |
Keyword:
|
Fréchet space |
Keyword:
|
projective limit |
Keyword:
|
surjective mapping |
MSC:
|
46A04 |
MSC:
|
46M05 |
MSC:
|
46M15 |
MSC:
|
46M40 |
idZBL:
|
Zbl 1199.46163 |
idMR:
|
MR2428307 |
DOI:
|
10.21136/MB.2008.134054 |
. |
Date available:
|
2009-09-24T22:35:08Z |
Last updated:
|
2021-11-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134054 |
. |
Reference:
|
[1] B. Aqzzouz, R. Nouira: L’exactitude du foncteur limite projective sur la catégorie des quotients d’espaces de Fréchet.(to appear). |
Reference:
|
[2] V. P. Palamodov: The projective limit functor in the category of topological linear spaces.Mat. Sb. (N.S.) 75 (1968), 567–603. (Russian) MR 0223851 |
Reference:
|
[3] V. P. Palamodov: Homological methods in the theory of locally convex spaces.Usp. Mat. Nauk 26 (1971), 3–65. (Russian) Zbl 0247.46070, MR 0293365 |
Reference:
|
[4] L. Waelbroeck: Quotient Fréchet spaces.Rev. Roum. Math. Pures Appl. 34 (1989), 171–179. Zbl 0696.46052, MR 1005909 |
Reference:
|
[5] J. Wengenroth: Derived Functors in Functional Analysis.Lect. Notes Math. 1810, Springer, Berlin, 2003. Zbl 1031.46001, MR 1977923 |
. |