Previous |  Up |  Next

Article

Title: Free actions on semiprime rings (English)
Author: Chaudhry, Muhammad Anwar
Author: Samman, Mohammad S.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 197-208
Summary lang: English
.
Category: math
.
Summary: We identify some situations where mappings related to left centralizers, derivations and generalized $(\alpha ,\beta )$-derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation $T$, of a semiprime ring $R$ the mapping $\psi \: R \rightarrow R$ defined by $\psi (x)=T(x) x - x T(x)$ for all $x \in R$ is a free action. We also show that for a generalized $(\alpha , \beta )$-derivation $F$ of a semiprime ring $R,$ with associated $(\alpha , \beta )$-derivation $d,$ a dependent element $a$ of $F$ is also a dependent element of $\alpha + d.$ Furthermore, we prove that for a centralizer $f$ and a derivation $d$ of a semiprime ring $R$, $\psi = d\circ f$ is a free action. (English)
Keyword: prime ring
Keyword: semiprime ring
Keyword: dependent element
Keyword: free action
Keyword: centralizer
Keyword: derivation
MSC: 16N60
MSC: 16W20
MSC: 16W25
idZBL: Zbl 1170.16026
idMR: MR2428315
DOI: 10.21136/MB.2008.134055
.
Date available: 2009-09-24T22:36:20Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134055
.
Reference: [1] C. A. Akemann, G. K. Pedersen, J. Tomiyama: Multipliers of $C^{*}$-algebras.J. Funct. Anal. 13 (1973), 277–301. MR 0470685, 10.1016/0022-1236(73)90036-0
Reference: [2] P. Ara, M. Mathieu: An application of local multipliers to centralizing mappings of $C^{*}$-algebras.Quart. J. Math. Oxford 44 (1993), 129–138. MR 1222369, 10.1093/qmath/44.2.129
Reference: [3] M. Brešar: On the composition of $(\alpha , \beta )$-derivations of rings, and application to von Neumann algebras.Acta Sci. Math. 56 (1992), 369–375. MR 1222081
Reference: [4] J. C. Chang: $(\alpha ,\beta )$-derivations of prime rings having power central values.Bull. Inst. Math., Acad. Sin. 23 (1995), 295–303. MR 1367365
Reference: [5] M. A. Chaudhry, A. B. Thaheem: On $(\alpha ,\beta )$-derivations of semiprime rings.Demonstratio Math. 36 (2003), 283–287. MR 1984339
Reference: [6] T. C. Chen: Special identities with $(\alpha ,\beta )$-derivations.Riv. Mat. Univ. Parma 5 (1996), 109–119. Zbl 0876.16025, MR 1456405
Reference: [7] H. Choda, I. Kasahara, R. Nakamoto: Dependent elements of automorphisms of a $C^{*}$-algebra.Proc. Japan Acad. 48 (1972), 561–565. MR 0341109
Reference: [8] H. Choda: On freely acting automorphisms of operator algebras.Kodai Math. Sem. Rep. 26 (1974), 1–21. Zbl 0296.46063, MR 0358362, 10.2996/kmj/1138846942
Reference: [9] J. Dixmier: Les Algebres d’Operateurs dans l’Espace Hilbertien.Gauthier-Villars, Paris, 1957. Zbl 0088.32304, MR 0094722
Reference: [10] I. N. Herstein: Rings with involution.Univ. Chicago Press, Chicago, 1976. Zbl 0343.16011, MR 0442017
Reference: [11] B. Hvala: Generalized derivations in rings.Comm. Algebra 26 (1998), 1147–1166. Zbl 0899.16018, MR 1612208, 10.1080/00927879808826190
Reference: [12] R. R. Kallman: A generalization of free action.Duke Math. J. 36 (1969), 781–789. Zbl 0184.17101, MR 0256181, 10.1215/S0012-7094-69-03693-X
Reference: [13] A. Laradji, A. B. Thaheem: On dependent elements in semiprime rings.Math. Japonica 47 (1998), 29–31. MR 1606291
Reference: [14] F. J. Murray, J. von Neumann: On rings of operators.Ann. Math. 37 (1936), 116–229. MR 1503275, 10.2307/1968693
Reference: [15] J. von Neumann: On rings of operators III.Ann. Math. 41 (1940), 94–161. Zbl 0023.13303, MR 0000898, 10.2307/1968823
Reference: [16] M. S. Samman, M. A. Chaudhry: Dependent elements of left centralizers of semiprime rings.Preprint. MR 2467193
Reference: [17] S. Stratila: Modular Theory in Operator Algebras.Abacus Press, Kent, 1981. Zbl 0504.46043, MR 0696172
Reference: [18] J. Vukman: Centralizers of semiprime rings.Comment. Math. Univ. Carolin. 42 (2001), 237–245. MR 1832143
Reference: [19] J. Vukman, I. Kosi-Ulbl: On dependent elements in rings.Int. J. Math. Math. Sci. 53–56 (2004), 2895–2906. MR 2145367
Reference: [20] J. Vukman: On dependent elements and related problems in rings.Int. Math. J. 6 (2005), 93–112. Zbl 1158.16309, MR 2146333
Reference: [21] J. Vukman, I. Kosi-Ulbl: Centralizers on rings and algebras.Bull. Austral. Math. Soc. 71 (2005), 225–234. MR 2133407, 10.1017/S000497270003820X
Reference: [22] B. Zalar: On centralizers of semiprime rings.Comment. Math. Univ. Carolin. 32 (1991), 609–614. Zbl 0746.16011, MR 1159807
.

Files

Files Size Format View
MathBohem_133-2008-2_9.pdf 241.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo