Previous |  Up |  Next

Article

Title: On extensions of primary almost totally projective abelian groups (English)
Author: Danchev, Peter V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 149-155
Summary lang: English
.
Category: math
.
Summary: Suppose $G$ is a subgroup of the reduced abelian $p$-group $A$. The following two dual results are proved: $(*)$ If $A/G$ is countable and $G$ is an almost totally projective group, then $A$ is an almost totally projective group. $(**)$ If $G$ is countable and nice in $A$ such that $A/G$ is an almost totally projective group, then $A$ is an almost totally projective group. These results somewhat strengthen theorems due to Wallace (J. Algebra, 1971) and Hill (Comment. Math. Univ. Carol., 1995), respectively. (English)
Keyword: totally projective group
Keyword: almost totally projective group
Keyword: countable group
Keyword: extension
MSC: 20K10
MSC: 20K25
MSC: 20K27
MSC: 20K35
MSC: 20K40
idZBL: Zbl 1170.20310
idMR: MR2428310
DOI: 10.21136/MB.2008.134056
.
Date available: 2009-09-24T22:35:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134056
.
Reference: [1] P. V. Danchev: Generalized Dieudonné and Honda criteria.Alg. Colloq. 15 (2008). Zbl 1154.20043, MR 2418776
Reference: [2] P. V. Danchev: Generalized Dieudonné and Hill criteria.Portugal. Math. 65 (2008), 121–142. Zbl 1146.20034, MR 2387091
Reference: [3] P. V. Danchev, P. W. Keef: Generalized Wallace theorems.(to appear). MR 2498370
Reference: [4] P. V. Danchev, P. W. Keef: Dual Wallace theorems. Submitted..
Reference: [5] L. Fuchs: Infinite Abelian Groups, II.Mir, Moskva, 1977. (Russian) MR 0457533
Reference: [6] P. D. Hill: Almost coproducts of finite cyclic groups.Commentat. Math. Univ. Carolin. 36 (1995), 795–804. Zbl 0845.20038, MR 1378700
Reference: [7] P. D. Hill, W. D. Ullery: Almost totally projective groups.Czech. Math. J. 46 (1996), 249–258. MR 1388614
Reference: [8] P. D. Hill, W. D. Ullery: Isotype separable subgroups of totally projective groups.Proc. Padova Conf. 1994, Abelian Groups and Modules, A. Facchini (ed.), Kluwer Acad. Publ., Dordrecht, 1995, pp. 291–300. MR 1378207
Reference: [9] K. D. Wallace: On mixed groups of torsion-free rank one with totally projective primary components.J. Algebra 17 (1971), 482–488. Zbl 0215.39902, MR 0272891, 10.1016/0021-8693(71)90005-6
.

Files

Files Size Format View
MathBohem_133-2008-2_4.pdf 229.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo