Previous |  Up |  Next


totally projective group; almost totally projective group; countable group; extension
Suppose $G$ is a subgroup of the reduced abelian $p$-group $A$. The following two dual results are proved: $(*)$ If $A/G$ is countable and $G$ is an almost totally projective group, then $A$ is an almost totally projective group. $(**)$ If $G$ is countable and nice in $A$ such that $A/G$ is an almost totally projective group, then $A$ is an almost totally projective group. These results somewhat strengthen theorems due to Wallace (J. Algebra, 1971) and Hill (Comment. Math. Univ. Carol., 1995), respectively.
[1] P. V. Danchev: Generalized Dieudonné and Honda criteria. Alg. Colloq. 15 (2008). MR 2418776 | Zbl 1154.20043
[2] P. V. Danchev: Generalized Dieudonné and Hill criteria. Portugal. Math. 65 (2008), 121–142. MR 2387091 | Zbl 1146.20034
[3] P. V. Danchev, P. W. Keef: Generalized Wallace theorems. (to appear). MR 2498370
[4] P. V. Danchev, P. W. Keef: Dual Wallace theorems. Submitted.
[5] L. Fuchs: Infinite Abelian Groups, II. Mir, Moskva, 1977. (Russian) MR 0457533
[6] P. D. Hill: Almost coproducts of finite cyclic groups. Commentat. Math. Univ. Carolin. 36 (1995), 795–804. MR 1378700 | Zbl 0845.20038
[7] P. D. Hill, W. D. Ullery: Almost totally projective groups. Czech. Math. J. 46 (1996), 249–258. MR 1388614
[8] P. D. Hill, W. D. Ullery: Isotype separable subgroups of totally projective groups. Proc. Padova Conf. 1994, Abelian Groups and Modules, A. Facchini (ed.), Kluwer Acad. Publ., Dordrecht, 1995, pp. 291–300. MR 1378207
[9] K. D. Wallace: On mixed groups of torsion-free rank one with totally projective primary components. J. Algebra 17 (1971), 482–488. DOI 10.1016/0021-8693(71)90005-6 | MR 0272891 | Zbl 0215.39902
Partner of
EuDML logo