[1] P. Aiena: 
Fredholm Theory and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, 2004. 
MR 2070395[4] M. Amouch: 
Generalized $a$-Weyl’s theorem and the single-valued extension property. Extracta. Math. 21 (2006), 51–65. 
MR 2258341 | 
Zbl 1123.47005[6] M. Berkani, N. Castro, S. V. Djordjevic: 
Single valued extension property and generalized Weyl’s theorem. Math. Bohem. 131 (2006), 29–38. 
MR 2211001[8] M. Berkani, J. J. Koliha: 
Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (2003), 359–376. 
MR 1991673[9] M. Berkani, M. Sarih: 
On semi B-Fredholm operators. Glasgow Math. J. 43 (2001), 457–465. 
MR 1878588[18] K. B. Laursen, M. M. Neumann: 
An Introduction to Local Spectral Theory. Clarendon, Oxford, 2000. 
MR 1747914[21] M. Mbekhta: 
Résolvant généralisé et théorie spectrale. J. Operator Theory 21 (1989), 69–105. 
MR 1002122 | 
Zbl 0694.47002[24] V. Rakočević: 
On the essential approximate point spectrum II. Mat. Vesnik 36 (1984), 89–97. 
MR 0880647[26] V. Rakočević: 
Operators obeying $a$-Weyl’s theorem. Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. 
MR 1030982[27] H. Weyl: 
Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27 (1909), 373–392. 
DOI 10.1007/BF03019655[28] H. Zguitti: 
A note on generalized Weyl’s theorem. J. Math. Anal. Appl. 324 (2006), 992–1005. 
MR 2201769 | 
Zbl 1101.47002