Previous |  Up |  Next

Article

Title: Radical classes of distributive lattices having the least element (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 3
Year: 2002
Pages: 409-425
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal D$ be the system of all distributive lattices and let $\mathcal D_0$ be the system of all $L\in \mathcal D$ such that $L$ possesses the least element. Further, let $\mathcal D_1$ be the system of all infinitely distributive lattices belonging to $\mathcal D_0$. In the present paper we investigate the radical classes of the systems $\mathcal D$, $\mathcal D_0$ and $\mathcal D_1$. (English)
Keyword: distributive lattice
Keyword: infinite distributivity
Keyword: radical class
MSC: 06D05
MSC: 06D10
idZBL: Zbl 1007.06009
idMR: MR1931325
DOI: 10.21136/MB.2002.134071
.
Date available: 2009-09-24T22:03:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134071
.
Reference: [1] P. Conrad: $K$-radical classes of lattice ordered groups.Algebra, Proc. Conf. Carbondale (1980), Lecture Notes Math vol. 848, 1981, pp. 186–207. Zbl 0455.06010, MR 0613186
Reference: [2] P. F. Conrad, M. R. Darnel: Generalized Boolean algebras in lattice ordered groups.Order 14 (1998), 295–319. MR 1644504
Reference: [3] Dao-Rong Ton: Product radical classes of $\ell $-groups.Czechoslovak Math. J. 42 (1992), 129–142. MR 1152176
Reference: [4] M. Darnel: Closure operations on radicals of lattice ordered groups.Czechoslovak Math. J. 37 (1987), 51–64. MR 0875127
Reference: [5] J. Jakubík: Radical mappings and radical classes of lattice ordered groups.Symposia Math vol. 21, Academic Press, New York, 1977, pp. 451–477. MR 0491397
Reference: [6] J. Jakubík: Products of radical classes of lattice ordered groups.Acta Math. Univ. Comen. 39 (1980), 31–41. MR 0619260
Reference: [7] J. Jakubík: On $K$-radicals of lattice ordered groups.Czechoslovak Math. J. 33 (1983), 149–163.
Reference: [8] J. Jakubík: On radical classes of abelian linearly ordered groups.Math. Slovaca 35 (1985), 141–154. MR 0795009
Reference: [9] J. Jakubík: Radical subgroups of lattice ordered groups.Czechoslovak Math. J. 36 (1986), 285–297. MR 0831316
Reference: [10] J. Jakubík: Closure operators on the lattice of radical classes of lattice ordered groups.Czechoslovak Math. J. 38 (1988), 71–77. MR 0925941
Reference: [11] J. Jakubík: $K$-radical classes of abelian linearly ordered groups.Math. Slovaca (1988), 33–44. MR 0945078
Reference: [12] J. Jakubík: On a radical class of lattice ordered groups.Czechoslovak Math. J. 39 (1989), 641–643. MR 1017999
Reference: [13] J. Jakubík: On torsion classes generated by radical classes of lattice ordered groups.Archivum Math. 26 (1990), 115–119. MR 1188270
Reference: [14] J. Jakubík: Closed convex $\ell $-subgroups and radical classes of convergence $\ell $-groups.Math. Bohem. 122 (1997), 301–315. MR 1600660
Reference: [15] J. Jakubík: Radical classes of generalized Boolean algebras.Czechoslovak Math. J. 48 (1998), 253–268. MR 1624315, 10.1023/A:1022885303504
Reference: [16] J. Jakubík: Radical classes of $MV$-algebras.Czechoslovak Math. J. 49 (1999), 191–211. MR 1676805, 10.1023/A:1022428713092
Reference: [17] J. Jakubík: Radical classes of complete lattice ordered groups.Czechoslovak Math. J. 49 (1999), 417–424. MR 1719676
Reference: [18] J. Jakubík, G. Pringerová: Radical classes of cyclically ordered groups.Math. Slovaca 38 (1998), 255–268. MR 0977904
Reference: [19] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice-Ordered Groups.Kluwer Academic Publishers, Dordrecht, 1994. MR 1369091
Reference: [20] J. Martinez: Torsion theory for lattice-ordered groups.Czechoslovak Math. J. 25, 284–299. Zbl 0331.06009, MR 0389705
Reference: [21] N. Ya. Medvedev: On the lattice of radicals of a finitely generated $\ell $-group.Math. Slovaca 33 (1983), 185–188. (Russian) MR 0699088
.

Files

Files Size Format View
MathBohem_127-2002-3_6.pdf 372.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo