Previous |  Up |  Next

Article

Title: The induced paths in a connected graph and a ternary relation determined by them (English)
Author: Nebeský, Ladislav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 3
Year: 2002
Pages: 397-408
Summary lang: English
.
Category: math
.
Summary: By a ternary structure we mean an ordered pair $(X_0, T_0)$, where $X_0$ is a finite nonempty set and $T_0$ is a ternary relation on $X_0$. By the underlying graph of a ternary structure $(X_0, T_0)$ we mean the (undirected) graph $G$ with the properties that $X_0$ is its vertex set and distinct vertices $u$ and $v$ of $G$ are adjacent if and only if \[\lbrace x \in X_0\; T_0(u, x, v)\rbrace \cup \lbrace x \in X_0\; T_0(v, x, u)\rbrace = \lbrace u, v\rbrace .\] A ternary structure $(X_0, T_0)$ is said to be the B-structure of a connected graph $G$ if $X_0$ is the vertex set of $G$ and the following statement holds for all $u, x, y \in X_0$: $T_0(x, u, y)$ if and only if $u$ belongs to an induced $x-y$ path in $G$. It is clear that if a ternary structure $(X_0, T_0)$ is the B-structure of a connected graph $G$, then $G$ is the underlying graph of $(X_0, T_0)$. We will prove that there exists no sentence $\sigma $ of the first-order logic such that a ternary structure $(X_0, T_0)$ with a connected underlying graph $G$ is the B-structure of $G$ if and only if $(X_0, T_0)$ satisfies $\sigma $. (English)
Keyword: connected graph
Keyword: induced path
Keyword: ternary relation
Keyword: finite structure
MSC: 03C13
MSC: 05C38
idZBL: Zbl 1003.05063
idMR: MR1931324
DOI: 10.21136/MB.2002.134072
.
Date available: 2009-09-24T22:02:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134072
.
Reference: [1] M. Changat, S. Klavžar, H. M. Mulder: The all-path transit function of a graph.Czechoslovak Math. J. 52 (2001), 439–448. MR 1844322
Reference: [2] G. Chartrand, L. Lesniak: Graphs & Digraphs. Third edition.Chapman & Hall, London, 1996. MR 1408678
Reference: [3] P. Duchet: Convex sets in graphs, II. Minimal path convexity.J. Combinatorial Theory, Series B 44 (1998), 307–316. MR 0941439
Reference: [4] H-D. Ebbinghaus, J. Flum: Finite Model Theory.Springer, Berlin, 1995. MR 1409813
Reference: [5] M. A. Morgana, H. M. Mulder: The induced path convexity, betweenness and svelte graphs.(to appear). MR 1910118
Reference: [6] H. M. Mulder: The interval function of a graph.MC-tract 132, Mathematisch Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [7] H. M. Mulder: Transit functions on graphs.In preparation. Zbl 1166.05019
Reference: [8] L. Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44 (1994), 173–178. MR 1257943
Reference: [9] L. Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math. J. 47 (1997), 149–161. MR 1435613, 10.1023/A:1022404624515
Reference: [10] L. Nebeský: Characterizing the interval function of a connected graph.Math. Bohem. 123 (1998), 137–144. MR 1673965
Reference: [11] L. Nebeský: A theorem for an axiomatic approach to metric properties of connected graphs.Czechoslovak Math. J. 50 (2000), 121–133. MR 1745467, 10.1023/A:1022401506441
Reference: [12] L. Nebeský: The interval function of a connected graph and a characterization of geodetic graphs.Math. Bohem. 126 (2001), 247–254. Zbl 0977.05045, MR 1826487
.

Files

Files Size Format View
MathBohem_127-2002-3_5.pdf 356.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo