Previous |  Up |  Next

Article

Keywords:
distance functions and inequality relations; closure operators and Galois connections; Lipschitz and monotone functions; fixed points
Summary:
Following the ideas of R. DeMarr, we establish a Galois connection between distance functions on a set $S$ and inequality relations on $X_{S}=S \times \mathbb{R}$. Moreover, we also investigate a relationship between the functions of $S$ and $X_{S}$.
References:
[1] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25, Providence, Rhode Island, 1967. MR 0598630 | Zbl 0153.02501
[2] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324–353. MR 0346619 | Zbl 0286.49015
[3] Everett, C. J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514–525. MR 0010556 | Zbl 0060.06205
[4] Fletcher, P., Lindgren, W. F.: Quasi-Uniform Spaces. Marcel Dekker, New York, 1982. MR 0660063
[5] Jachymski, J. R.: Fixed point theorems in metric and uniform spaces via the Knaster-Tarski principle. Nonlinear Anal. 32 (1998), 225–233. MR 1491625
[6] DeMarr, R.: Partially ordered spaces and metric spaces. Amer. Math. Monthly 72 (1965), 628–631. MR 0179760 | Zbl 0128.41002
[7] Ore, O.: Galois connexions. Trans. Amer. Math. Soc. 55 (1944), 493–513. MR 0010555 | Zbl 0060.06204
[8] Pataki, G.: On the extensions, refinements and modifications of relators. (to appear). MR 1882531 | Zbl 1042.08001
[9] Rennie, B. C.: Lattices. Proc. London Math. Soc. 52 (1951), 386–400. MR 0690634 | Zbl 0044.37901
[10] Szász, G.: Introduction to Lattice Theory. Academic Press, New York, 1963. MR 0166118
Partner of
EuDML logo