Previous |  Up |  Next

Article

Keywords:
single valued extension property; B-Weyl spectrum; generalized Weyl’s theorem
Summary:
Let $T$ be an operator acting on a Banach space $X$, let $\sigma (T)$ and $ \sigma _{BW}(T) $ be respectively the spectrum and the B-Weyl spectrum of $T$. We say that $T$ satisfies the generalized Weyl’s theorem if $ \sigma _{BW}(T)= \sigma (T) \setminus E(T)$, where $E(T)$ is the set of all isolated eigenvalues of $T$. The first goal of this paper is to show that if $T$ is an operator of topological uniform descent and $0$ is an accumulation point of the point spectrum of $T,$ then $T$ does not have the single valued extension property at $0$, extending an earlier result of J. K. Finch and a recent result of Aiena and Monsalve. Our second goal is to give necessary and sufficient conditions under which an operator having the single valued extension property satisfies the generalized Weyl’s theorem.
References:
[1] Aiena, P., Monsalve, O.: Operators which do not have single valued extension property. J. Math. Anal. Appl. 250 (2000), 435–448. DOI 10.1006/jmaa.2000.6966 | MR 1786074
[2] Berkani, M.: On a class of quasi-Fredholm operators. Int. Equ. Oper. Theory 34 (1999), 244–249. DOI 10.1007/BF01236475 | MR 1694711 | Zbl 0939.47010
[3] Berkani, M.: Restriction of an operator to the range of its powers. Studia Math. 140 (2000), 163–175. DOI 10.4064/sm-140-2-163-175 | MR 1784630 | Zbl 0978.47011
[4] Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl’s Theorem. Proc. Amer. Math. Soc. 130 (2002), 1717–1723. DOI 10.1090/S0002-9939-01-06291-8 | MR 1887019
[5] Berkani, M., Sarih, M.: An Atkinson type theorem for B-Fredholm operators. Studia Math. 148 (2001), 251–257. DOI 10.4064/sm148-3-4 | MR 1880725
[6] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (2003), 359–376. MR 1991673
[7] Berkani, M.: B-Weyl spectrum and poles of the resolvent. J. Math. Anal. Appl. 272 (2002), 596–603. DOI 10.1016/S0022-247X(02)00179-8 | MR 1930862 | Zbl 1043.47004
[8] Finch, J. K.: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61–69. DOI 10.2140/pjm.1975.58.61 | MR 0374985 | Zbl 0315.47002
[9] Grabiner, S.: Uniform ascent and descent of bounded operators. J. Math. Soc. Japan 34 (1982), 317–337. DOI 10.2969/jmsj/03420317 | MR 0651274 | Zbl 0477.47013
[10] Jeon, I. H.: Weyl’s theorem for operators with a growth condition and Dunford’s property $(C)$. Indian J. Pure Appl. Math. 33 (2002), 403–407. MR 1894635
[11] Kordula, V., Müller, V.: On the axiomatic theory of the spectrum. Stud. Math. 119 (1996), 109–128. MR 1391471
[12] Lay, D. C.: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970), 197–214. DOI 10.1007/BF01351564 | MR 0259644 | Zbl 0177.17102
[13] Mbekhta, M., Müller V.: On the axiomatic theory of the spectrum, II. Stud. Math. 119 (1996), 129–147. DOI 10.4064/sm-119-2-129-147 | MR 1391472
[14] Roch, S., Silbermann, B.: Continuity of generalized inverses in Banach algebras. Stud. Math. 136 (1999), 197–227. MR 1724245
[15] Schmoeger, C.: On isolated points of the spectrum of a bounded linear operator. Proc. Am. Math. Soc. 117 (1993), 715–719. DOI 10.1090/S0002-9939-1993-1111438-8 | MR 1111438 | Zbl 0780.47019
[16] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27 (1909), 373–392. DOI 10.1007/BF03019655
Partner of
EuDML logo