Article
Keywords:
Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral
Summary:
We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
References:
                        
[2] B. Bongiorno: 
The Henstock-Kurzweil integral. Handbook of Measure Theory I, E. Pap ed., Elsevier Amsterdam, 2002, pp. 587–615. 
MR 1954623 | 
Zbl 1024.26004[3] J. Diestel, J. J. Uhl: 
Vector measures. Math. Surveys, vol. 15, AMS, Providence, R.I., 1977. 
MR 0453964[5] J. L. Gamez, J. Mendoza: 
On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133. 
MR 1623348[7] K. Musial: 
Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 23 (1991), 177–262. 
MR 1248654 | 
Zbl 0798.46042[8] C. Swartz: 
Norm convergence and uniform integrability for the Kurzweil-Henstock integral. Real Anal. Exchange 24 (1998/99), 423–426. 
MR 1691761