Title:
|
Multipliers for generalized Riemann integrals in the real line (English) |
Author:
|
Lee, Tuo-Yeong |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
131 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
161-166 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral. (English) |
Keyword:
|
multiplier |
Keyword:
|
$C$-integral |
Keyword:
|
$BV$ function |
MSC:
|
26A39 |
idZBL:
|
Zbl 1112.26009 |
idMR:
|
MR2242842 |
DOI:
|
10.21136/MB.2006.134090 |
. |
Date available:
|
2009-09-24T22:25:15Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134090 |
. |
Reference:
|
[1] B. Bongiorno: A new integral for the problem of primitives.Matematiche (Catania) 51 (1996 1997), 299–313. (Italian) MR 1488074 |
Reference:
|
[2] B. Bongiorno: On the minimal solution of the problem of primitives.J. Math. Anal. Appl. 251 (2000), 479–487. Zbl 0991.26004, MR 1794433, 10.1006/jmaa.2000.7019 |
Reference:
|
[3] B. Bongiorno, L. Di Piazza, D. Preiss: A constructive minimal integral which includes Lebesgue integrable functions and derivatives.J. London Math. Soc. 62 (2000), 117–126. MR 1771855, 10.1112/S0024610700008905 |
Reference:
|
[4] D. Bongiorno: Riemann-type definition of the improper integrals.Czechoslovak Math. J. 54 (2004), 717–725. Zbl 1080.26003, MR 2086728, 10.1007/s10587-004-6420-x |
Reference:
|
[5] D. Bongiorno: On the problem of nearly derivatives.Sci. Math. Jpn. 61 (2005), 299–311. Zbl 1077.26005, MR 2123887 |
Reference:
|
[6] L. Di Piazza: A Riemann-type minimal integral for the classical problem of primitives.Rend. Istit. Mat. Univ. Trieste 34 (2002 2003), 143–153. MR 2013947 |
Reference:
|
[7] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics, AMS, 1994. Zbl 0807.26004, MR 1288751 |
Reference:
|
[8] Peng Yee Lee, R. Výborný: The integral, An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. MR 1756319 |
Reference:
|
[9] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations. Boundary Value Problems and Adjoints.D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979. MR 0542283 |
. |