Previous |  Up |  Next

Article

Keywords:
multiplier; $C$-integral; $BV$ function
Summary:
We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.
References:
[1] B. Bongiorno: A new integral for the problem of primitives. Matematiche (Catania) 51 (1996 1997), 299–313. (Italian) MR 1488074
[2] B. Bongiorno: On the minimal solution of the problem of primitives. J. Math. Anal. Appl. 251 (2000), 479–487. MR 1794433 | Zbl 0991.26004
[3] B. Bongiorno, L. Di Piazza, D. Preiss: A constructive minimal integral which includes Lebesgue integrable functions and derivatives. J. London Math. Soc. 62 (2000), 117–126. MR 1771855
[4] D. Bongiorno: Riemann-type definition of the improper integrals. Czechoslovak Math. J. 54 (2004), 717–725. MR 2086728 | Zbl 1080.26003
[5] D. Bongiorno: On the problem of nearly derivatives. Sci. Math. Jpn. 61 (2005), 299–311. MR 2123887 | Zbl 1077.26005
[6] L. Di Piazza: A Riemann-type minimal integral for the classical problem of primitives. Rend. Istit. Mat. Univ. Trieste 34 (2002 2003), 143–153. MR 2013947
[7] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, AMS, 1994. MR 1288751 | Zbl 0807.26004
[8] Peng Yee Lee, R. Výborný: The integral, An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. MR 1756319
[9] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979. MR 0542283
Partner of
EuDML logo