Previous |  Up |  Next

Article

Title: Domination numbers on the complement of the Boolean function graph of a graph (English)
Author: Janakiraman, T. N.
Author: Muthammai, S.
Author: Bhanumathi, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 3
Year: 2005
Pages: 247-263
Summary lang: English
.
Category: math
.
Summary: For any graph $G$, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of $G$ respectively. The Boolean function graph $B(G, L(G), \mathop {\mathrm NINC})$ of $G$ is a graph with vertex set $V(G)\cup E(G)$ and two vertices in $B(G, L(G), \mathop {\mathrm NINC})$ are adjacent if and only if they correspond to two adjacent vertices of $G$, two adjacent edges of $G$ or to a vertex and an edge not incident to it in $G$. For brevity, this graph is denoted by $B_{1}(G)$. In this paper, we determine domination number, independent, connected, total, point-set, restrained, split and non-split domination numbers in the complement $\bar{B}_{1}(G)$ of $B_{1}(G)$ and obtain bounds for the above numbers. (English)
Keyword: domination number
Keyword: eccentricity
Keyword: radius
Keyword: diameter
Keyword: neighborhood
Keyword: perfect matching
Keyword: Boolean function graph
MSC: 05C15
MSC: 05C69
idZBL: Zbl 1111.05076
idMR: MR2164655
DOI: 10.21136/MB.2005.134098
.
Date available: 2009-09-24T22:20:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134098
.
Reference: [1] J. Akiyama, T. Hamada, I. Yoshimura: On characterizations of the middle graphs.Tru. Math. (1975), 35–39. MR 0414436
Reference: [2] R. B. Allan, R. Laskar: On domination and independent domination of a graph.Discrete Math. 23 (1978), 73–76. MR 0523402, 10.1016/0012-365X(78)90105-X
Reference: [3] M. Behzad: A criterion for the planarity of the total graph of a graph.Proc. Cambridge Philos. Soc. 63 (1967), 679–681. Zbl 0158.20703, MR 0211896
Reference: [4] S. B. Chikkodimath, E. Sampathkumar: Semi total graphs-II.Graph Theory Research Report, Karnatak University (1973), 5–9.
Reference: [5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi: Total domination in graphs.Networks 10 (1980), 211–219. MR 0584887, 10.1002/net.3230100304
Reference: [6] E. J. Cockayne, B. L. Hartnell, S. T. Hedetniemi, R. Laskar: Perfect domination in graphs.J. Comb. Inf. Syst. Sci. 18 (1993), 136–148. MR 1317698
Reference: [7] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. Laskar, L. R. Markus: Restrained domination in graph.Discrete Math. 203 (1999), 61–69. MR 1696234, 10.1016/S0012-365X(99)00016-3
Reference: [8] T. Hamada, I. Yoshimura: Traversability and connectivity of the middle graph of a graph.Discrete Math. 14 (1976), 247–256. MR 0414435, 10.1016/0012-365X(76)90037-6
Reference: [9] F. Harary: Graph Theory.Addison-Wesley, Reading, Mass., 1969. Zbl 0196.27202, MR 0256911
Reference: [10] T. N. Janakiraman, S. Muthammai, M. Bhanumathi: On the Boolean function graph of a graph and on its complement.Math. Bohem. 130 (2005), 113–134. MR 2148646
Reference: [11] V. R. Kulli, B. Janakiram: The non-split domination number of a graph.Indian J. Pure Appl. Math. 27 (1996), 537–542. MR 1666671
Reference: [12] O. Ore: Theory of Graphs.Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962. Zbl 0105.35401
Reference: [13] E. Sampathkumar, L. Pushpalatha: Point-set domination number of a graph.Indian J. Pure Appl. Math. 24 (1993), 225–229. MR 1218532
Reference: [14] E. Sampathkumar, H. B. Walikar: The connected domination number of a graph.J. Math. Phys. Sci. 13, 607–613. MR 0575817
Reference: [15] D. V. S. Sastry, B. Syam Prasad Raju: Graph equations for line graphs, total graphs, middle graphs and quasi-total graphs.Discrete Math. 48 (1984), 113–119. MR 0732207, 10.1016/0012-365X(84)90137-7
Reference: [16] H. Whitney: Congruent graphs and the connectivity of graphs.Amer. J. Math. 54 (1932), 150–168. Zbl 0003.32804, MR 1506881, 10.2307/2371086
.

Files

Files Size Format View
MathBohem_130-2005-3_3.pdf 366.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo