Previous |  Up |  Next

Article

Title: Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb{R})$ (English)
Author: Glanc, Barbara
Author: Misiak, Aleksander
Author: Stepień, Zofia
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 3
Year: 2005
Pages: 265-275
Summary lang: English
.
Category: math
.
Summary: In this note all vectors and $\varepsilon $-vectors of a system of $m\le n$ linearly independent contravariant vectors in the $n$-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F( A{\underset{1}{\rightarrow }u}, A{\underset{2}{\rightarrow }u},\dots ,A{\underset{m}{\rightarrow }u}) =( \det A)^{\lambda }\cdot A\cdot F( {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots , {\underset{m}{\rightarrow }u})$ with $\lambda =0$ and $\lambda =1$, for an arbitrary pseudo-orthogonal matrix $A$ of index one and given vectors $ {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{m}{\rightarrow }u}.$ (English)
Keyword: $G$-space
Keyword: equivariant map
Keyword: pseudo-Euclidean geometry
Keyword: functional equation
MSC: 22E99
MSC: 53A35
MSC: 53A55
idZBL: Zbl 1108.53009
idMR: MR2164656
DOI: 10.21136/MB.2005.134097
.
Date available: 2009-09-24T22:20:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134097
.
Reference: [1] J. Aczél, S. Gołąb: Functionalgleichungen der Theorie der geometrischen Objekte.P.W.N. Warszawa, 1960. MR 0133763
Reference: [2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de $( r,s)$-orientation de la géométrie de Klein.Publ. Math. Debrecen 35 (1988), 43–50. MR 0971951
Reference: [3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie.Period. Math. Hung. 8 (1977), 83–89. Zbl 0335.50001, MR 0493695, 10.1007/BF02018051
Reference: [4] A. Misiak, E. Stasiak: Equivariant maps between certain $G$-spaces with $G=O( n-1,n)$.Math. Bohem. 126 (2001), 555–560. MR 1970258
Reference: [5] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1.Publ. Math. Debrecen 57 (2000), 55–69. Zbl 0966.53012, MR 1771671
.

Files

Files Size Format View
MathBohem_130-2005-3_4.pdf 331.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo