Previous |  Up |  Next

Article

Title: Quasi-modal algebras (English)
Author: Celani, Sergio
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 4
Year: 2001
Pages: 721-736
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce the class of Boolean algebras with an operator between the algebra and the set of ideals of the algebra. This is a generalization of the Boolean algebras with operators. We prove that there exists a duality between these algebras and the Boolean spaces with a certain relation. We also give some applications of this duality. (English)
Keyword: Boolean algebras
Keyword: modal algebras
Keyword: Boolean spaces with relations
MSC: 03G05
MSC: 06E25
idZBL: Zbl 0999.06012
idMR: MR1869464
DOI: 10.21136/MB.2001.134115
.
Date available: 2009-09-24T21:56:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134115
.
Reference: [1] Brink C., Rewitzky I. M.: Finite-cofinite program relations.Log. J. IGPL 7 (1999), 153–172. MR 1682045, 10.1093/jigpal/7.2.153
Reference: [2] Bosangue M., Kwiatkowska M.: Re-interpreting the modal $\mu $-calculus. Modal Logic and Process Algebra: A Bisimulation Perspective.A. Ponse, M. de Rijke, Y. Venema (eds.), CSLI Lectures Notes, Stanford, CA, 1995. MR 1375698
Reference: [3] Goldblatt R.: Mathematics of Modality.CSLI Lectures Notes, Stanford, CA, 1993. Zbl 0942.03516, MR 1317099
Reference: [4] Goldblatt R.: Saturation and the Hennessy-Milner Property.Modal Logic and Process Algebra: A Bisimulation Perspective, A. Ponse, M. de Rijke, Y. Venema (eds.), CSLI Lectures Notes, Stanford, CA, 1995. MR 1375698
Reference: [5] Jónsson B., Tarski A.: Boolean algebras with Operators, Part I.Amer. J. Math. 73 (1951), 891–939. MR 0044502, 10.2307/2372123
Reference: [6] Koppelberg S.: Topological duality.Handbook of Boolean Algebras, J. D. Monk, R. Bonnet (eds.) vol. 1, North-Holland, Amsterdam, 1989, pp. 95–126. MR 0991565
Reference: [7] Sambin G., Vaccaro V.: Topology and duality in modal logic.Ann. Pure Appl. Logic 37 (1988), 249–296. MR 0934369, 10.1016/0168-0072(88)90021-8
.

Files

Files Size Format View
MathBohem_126-2001-4_4.pdf 372.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo