Previous |  Up |  Next


$G$-space; equivariant map; pseudo-Euclidean geometry
There are four kinds of scalars in the $n$-dimensional pseudo-Euclidean geometry of index one. In this note, we determine all scalars as concomitants of a system of $m\le n$ linearly independent contravariant vectors of two so far missing types. The problem is resolved by finding the general solution of the functional equation $F( A\underset{1}{\rightarrow }{u},A \underset{2}{\rightarrow }{u},\dots ,A\underset{m}{\rightarrow }{u}) = \varphi \left( A\right) \cdot F( \underset{1}{\rightarrow }{u},\underset{2}{\rightarrow }{u},\dots ,\underset{m}{\rightarrow }{u})$ using two homomorphisms $\varphi $ from a group $G$ into the group of real numbers $\mathbb{R}_{0}=\left( \mathbb{R}\setminus \left\rbrace 0\right\lbrace ,\cdot \right)$.
[1] J. Aczél, S. Gołąb: Functionalgleichungen der Theorie der geometrischen Objekte. Panstwowe Wydawnietvo Naukove, Warszawa, 1960. MR 0133763
[2] L. Bieszk, E. Stasiak: Sur deux formes équivalents de la notion de $(r,s)$-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43–50. MR 0971951
[3] E. Kasparek: The homomorphisms of the pseudo-orthogonal group of index one into an abelian group. Demonstratio Math. 22 (1989), 763–771. MR 1041913
[4] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hungar. 8 (1977), 83–89. DOI 10.1007/BF02018051 | MR 0493695 | Zbl 0335.50001
[5] A. Misiak, E. Stasiak: Equivariant maps between certain $G$-spaces with $G=O\left( n-1,1\right)$. Math. Bohem. 126 (2001), 555–560. MR 1970258
[6] E. Stasiak: O pewnym działaniu grupy pseudoortogonalnej o indeksie jeden $O\left( n,1,\mathbb{R}\right) $ na sferze $S^{n-2}$. Prace Naukowe P.S. 485 (1993).
[7] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55–69. MR 1771671 | Zbl 0966.53012
Partner of
EuDML logo