| Title: | Equivariant mappings from vector product into $ G$-spaces of $\varphi $-scalars with $G=O\left( n,1,\mathbb{R}\right) $ (English) | 
| Author: | Glanc, Barbara | 
| Author: | Misiak, Aleksander | 
| Author: | Szmuksta-Zawadzka, Maria | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 132 | 
| Issue: | 3 | 
| Year: | 2007 | 
| Pages: | 325-332 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | There are four kinds of scalars in the $n$-dimensional pseudo-Euclidean geometry of index one. In this note, we determine all scalars as concomitants of a system of $m\le n$ linearly independent contravariant vectors of two so far missing types. The problem is resolved by finding the general solution of the functional equation $F( A\underset{1}{\rightarrow }{u},A \underset{2}{\rightarrow }{u},\dots ,A\underset{m}{\rightarrow }{u}) = \varphi \left( A\right) \cdot F( \underset{1}{\rightarrow }{u},\underset{2}{\rightarrow }{u},\dots ,\underset{m}{\rightarrow }{u})$ using two homomorphisms $\varphi $ from a group $G$ into the group of real numbers $\mathbb{R}_{0}=\left( \mathbb{R}\setminus \left\rbrace 0\right\lbrace ,\cdot \right)$. (English) | 
| Keyword: | $G$-space | 
| Keyword: | equivariant map | 
| Keyword: | pseudo-Euclidean geometry | 
| MSC: | 53A55 | 
| idZBL: | Zbl 1174.53007 | 
| idMR: | MR2355661 | 
| DOI: | 10.21136/MB.2007.134120 | 
| . | 
| Date available: | 2009-09-24T22:32:10Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134120 | 
| . | 
| Reference: | [1] J. Aczél, S. Gołąb: Functionalgleichungen der Theorie der geometrischen Objekte.Panstwowe Wydawnietvo Naukove, Warszawa, 1960. MR 0133763 | 
| Reference: | [2] L. Bieszk, E. Stasiak: Sur deux formes équivalents de la notion de $(r,s)$-orientation de la géométrie de Klein.Publ. Math. Debrecen 35 (1988), 43–50. MR 0971951 | 
| Reference: | [3] E. Kasparek: The homomorphisms of the pseudo-orthogonal group of index one into an abelian group.Demonstratio Math. 22 (1989), 763–771. MR 1041913 | 
| Reference: | [4] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie.Period. Math. Hungar. 8 (1977), 83–89. Zbl 0335.50001, MR 0493695, 10.1007/BF02018051 | 
| Reference: | [5] A. Misiak, E. Stasiak: Equivariant maps between certain $G$-spaces with $G=O\left( n-1,1\right)$.Math. Bohem. 126 (2001), 555–560. MR 1970258 | 
| Reference: | [6] E. Stasiak: O pewnym działaniu grupy pseudoortogonalnej o indeksie jeden $O\left( n,1,\mathbb{R}\right) $ na sferze $S^{n-2}$.Prace Naukowe P.S. 485 (1993). | 
| Reference: | [7] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1.Publ. Math. Debrecen 57 (2000), 55–69. Zbl 0966.53012, MR 1771671 | 
| . |