[1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina: 
Introduction to the Theory of Functional Differential Equations. Nauka, Moskva, 1991. (Russian) 
MR 1144998[3] R. Hakl, E. Bravyi, A. Lomtatidze: 
Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations. Czech. Math. J. 52 (2002), 513–530. 
DOI 10.1023/A:1021767411094 | 
MR 1923257[4] R. Hakl, A. Lomtatidze, B. Půža: 
New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Math. Bohem. 127 (2002), 509–524. 
MR 1942637[6] R. Hakl, A. Lomtatidze, J. Šremr: 
Some Boundary Value Problems for First Order Scalar Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Brno, 2002. 
MR 2096135[7] R. Hakl, S. Mukhigulashvili: 
On a boundary value problem for $n$-th order linear functional differential systems. Georgian Math. J. 12 (2005), 229–236. 
MR 2174179[8] R. Hakl, J. Šremr: 
On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators. Nonlinear Oscil (to appear). 
MR 2394937[10] I. Kiguradze, B. Půža: 
Boundary Value Problems for Systems of Linear Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Brno, 2003. 
MR 2001509[11] I. Kiguradze, B. Půža: 
On boundary value problems for systems of linear functional differential equations. Czech. Math. J. 47 (1997), 341–373. 
DOI 10.1023/A:1022829931363[12] V. Kolmanovskii, A. Myshkis: 
Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Acad. Publ., Dordrecht, 1999. 
MR 1680144[14] A. N. Ronto: 
Exact solvability conditions of the Cauchy problem for systems of linear first-order functional differential equations determined by $(\sigma _1,\sigma _2,\dots ,\sigma _n;\tau )$-positive operators. Ukrain. Mat. J. 55 (2003), 1853–1884. 
DOI 10.1023/B:UKMA.0000027047.61698.48 | 
MR 2075708[15] Š. Schwabik, M. Tvrdý, O. Vejvoda: 
Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia, Praha, 1979. 
MR 0542283[16] J. Šremr: 
On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators. Fasc. Math. 37 (2007), 87–108. 
MR 2320898 | 
Zbl 1134.34038