Previous |  Up |  Next

Article

Title: Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators (English)
Author: Šremr, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 3
Year: 2007
Pages: 263-295
Summary lang: English
.
Category: math
.
Summary: We establish new efficient conditions sufficient for the unique solvability of the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators. (English)
Keyword: system of functional differential equations with monotone operators
Keyword: initial value problem
Keyword: solvability
MSC: 34C12
MSC: 34K05
MSC: 34K06
MSC: 34K10
idZBL: Zbl 1174.34049
idMR: MR2355659
DOI: 10.21136/MB.2007.134126
.
Date available: 2009-09-24T22:31:48Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134126
.
Reference: [1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations.Nauka, Moskva, 1991. (Russian) MR 1144998
Reference: [2] N. Dilnaya, A. Rontó: Multistage iterations and solvability of linear Cauchy problems.Math. Notes (Miskolc) 4 (2003), 89–102. MR 2033998, 10.18514/MMN.2003.81
Reference: [3] R. Hakl, E. Bravyi, A. Lomtatidze: Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations.Czech. Math. J. 52 (2002), 513–530. MR 1923257, 10.1023/A:1021767411094
Reference: [4] R. Hakl, A. Lomtatidze, B. Půža: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Math. Bohem. 127 (2002), 509–524. MR 1942637
Reference: [5] R. Hakl, A. Lomtatidze, B. Půža: On a boundary value problem for first order scalar functional differential equations.Nonlinear Anal. 53 (2003), 391–405. MR 1964333, 10.1016/S0362-546X(02)00305-X
Reference: [6] R. Hakl, A. Lomtatidze, J. Šremr: Some Boundary Value Problems for First Order Scalar Functional Differential Equations.Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Brno, 2002. MR 2096135
Reference: [7] R. Hakl, S. Mukhigulashvili: On a boundary value problem for $n$-th order linear functional differential systems.Georgian Math. J. 12 (2005), 229–236. MR 2174179
Reference: [8] R. Hakl, J. Šremr: On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators.Nonlinear Oscil (to appear). MR 2394937
Reference: [9] J. Hale: Theory of Functional Differential Equations.Springer, 1977. Zbl 0352.34001, MR 0508721
Reference: [10] I. Kiguradze, B. Půža: Boundary Value Problems for Systems of Linear Functional Differential Equations.Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Brno, 2003. MR 2001509
Reference: [11] I. Kiguradze, B. Půža: On boundary value problems for systems of linear functional differential equations.Czech. Math. J. 47 (1997), 341–373. 10.1023/A:1022829931363
Reference: [12] V. Kolmanovskii, A. Myshkis: Introduction to the Theory and Applications of Functional Differential Equations.Kluwer Acad. Publ., Dordrecht, 1999. MR 1680144
Reference: [13] A. Rontó: On the initial value problem for systems of linear differential equations with argument deviations.Math. Notes (Miskolc) 6 (2005), 105–127. Zbl 1079.34052, MR 2148846, 10.18514/MMN.2005.123
Reference: [14] A. N. Ronto: Exact solvability conditions of the Cauchy problem for systems of linear first-order functional differential equations determined by $(\sigma _1,\sigma _2,\dots ,\sigma _n;\tau )$-positive operators.Ukrain. Mat. J. 55 (2003), 1853–1884. MR 2075708, 10.1023/B:UKMA.0000027047.61698.48
Reference: [15] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia, Praha, 1979. MR 0542283
Reference: [16] J. Šremr: On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators.Fasc. Math. 37 (2007), 87–108. Zbl 1134.34038, MR 2320898
Reference: [17] W. Walter: Differential and Integral Inequalities.Springer, 1970. Zbl 0252.35005, MR 0271508
.

Files

Files Size Format View
MathBohem_132-2007-3_5.pdf 415.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo