Previous |  Up |  Next

Article

Title: Realizable triples for stratified domination in graphs (English)
Author: Gera, Ralucca
Author: Zhang, Ping
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 2
Year: 2005
Pages: 185-202
Summary lang: English
.
Category: math
.
Summary: A graph is $2$-stratified if its vertex set is partitioned into two classes, where the vertices in one class are colored red and those in the other class are colored blue. Let $F$ be a $2$-stratified graph rooted at some blue vertex $v$. An $F$-coloring of a graph $G$ is a red-blue coloring of the vertices of $G$ in which every blue vertex $v$ belongs to a copy of $F$ rooted at $v$. The $F$-domination number $\gamma _F(G)$ is the minimum number of red vertices in an $F$-coloring of $G$. In this paper, we study $F$-domination where $F$ is a red-blue-blue path of order 3 rooted at a blue end-vertex. It is shown that a triple $({\mathcal A}, {\mathcal B}, {\mathcal C})$ of positive integers with ${\mathcal A}\le {\mathcal B}\le 2 {\mathcal A}$ and ${\mathcal B}\ge 2$ is realizable as the domination number, open domination number, and $F$-domination number, respectively, for some connected graph if and only if $({\mathcal A}, {\mathcal B}, {\mathcal C}) \ne (k, k, {\mathcal C})$ for any integers $k$ and ${\mathcal C}$ with ${\mathcal C}> k \ge 2$. (English)
Keyword: stratified graph
Keyword: $F$-domination
Keyword: domination
Keyword: open domination
MSC: 05C15
MSC: 05C69
idZBL: Zbl 1112.05076
idMR: MR2148652
DOI: 10.21136/MB.2005.134128
.
Date available: 2009-09-24T22:20:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134128
.
Reference: [1] C. Berge: The Theory of Graphs and Its Applications.Methuen, London, 1962. Zbl 0097.38903, MR 0132541
Reference: [2] G. Chartrand, T. W. Haynes, M. A. Henning, P. Zhang: Stratified claw domination in prisms.J. Comb. Math. Comb. Comput. 33 (2000), 81–96. MR 1772755
Reference: [3] G. Chartrand, T. W. Haynes, M. A. Henning, P. Zhang: Stratification and domination in graphs.Discrete Math. 272 (2003), 171–185. MR 2009541, 10.1016/S0012-365X(03)00078-5
Reference: [4] G. Chartrand, P. Zhang: Introduction to Graph Theory.McGraw-Hill, Boston, 2005.
Reference: [5] E. J. Cockayne, S. T. Hedetniemi: Towards a theory of domination in graphs.Networks (1977), 247–261. MR 0483788
Reference: [6] R. Gera, P. Zhang: On stratification and domination in graphs.Preprint. MR 2330326
Reference: [7] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs.Marcel Dekker, New York, 1998. MR 1605684
Reference: [8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Domination in Graphs: Advanced Topics.Marcel Dekker, New York, 1998. MR 1605685
Reference: [9] O. Ore: Theory of Graphs.Amer. Math. Soc. Colloq. Pub., Providence, RI, 1962. Zbl 0105.35401, MR 0150753
Reference: [10] R. Rashidi: The Theory and Applications of Stratified Graphs.Ph.D. Dissertation, Western Michigan University, 1994.
.

Files

Files Size Format View
MathBohem_130-2005-2_7.pdf 397.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo